Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,38 +14,24 @@ import random
|
|
14 |
from transformers import pipeline
|
15 |
import torch
|
16 |
import asyncio
|
17 |
-
import nest_asyncio
|
18 |
from nltk.tokenize import sent_tokenize
|
19 |
|
20 |
-
# Setup
|
21 |
nltk.download('punkt', quiet=True)
|
22 |
-
|
23 |
-
|
24 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
28 |
MODEL_NAME = "DeepESP/gpt2-spanish"
|
29 |
|
30 |
-
VOICE_NAMES, VOICES = [], []
|
31 |
-
|
32 |
async def get_voices():
|
33 |
-
voces = await edge_tts.list_voices()
|
34 |
-
voice_names = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in voces]
|
35 |
-
return voice_names, voces
|
36 |
-
|
37 |
-
async def get_and_set_voices():
|
38 |
-
global VOICE_NAMES, VOICES
|
39 |
try:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
except
|
44 |
-
|
45 |
-
VOICE_NAMES = ["Voz Predeterminada (Femenino, es-ES)"]
|
46 |
-
VOICES = [{'ShortName': 'es-ES-ElviraNeural'}]
|
47 |
|
48 |
-
asyncio.
|
49 |
|
50 |
def generar_guion_profesional(prompt):
|
51 |
try:
|
@@ -56,8 +42,11 @@ def generar_guion_profesional(prompt):
|
|
56 |
)
|
57 |
response = generator(
|
58 |
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
|
59 |
-
"
|
60 |
-
|
|
|
|
|
|
|
61 |
temperature=0.7,
|
62 |
top_k=50,
|
63 |
top_p=0.95,
|
@@ -68,95 +57,130 @@ def generar_guion_profesional(prompt):
|
|
68 |
raise ValueError("Guion demasiado breve")
|
69 |
return guion
|
70 |
except Exception as e:
|
71 |
-
logger.error(f"Error generando guion: {e}")
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def buscar_videos_avanzado(prompt, guion, num_videos=5):
|
79 |
try:
|
80 |
oraciones = sent_tokenize(guion)
|
81 |
-
vectorizer = TfidfVectorizer(stop_words='
|
82 |
tfidf = vectorizer.fit_transform(oraciones)
|
83 |
palabras = vectorizer.get_feature_names_out()
|
84 |
scores = np.asarray(tfidf.sum(axis=0)).ravel()
|
85 |
-
|
86 |
-
palabras_clave = [palabras[i] for i in
|
87 |
-
|
88 |
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
|
89 |
-
|
90 |
-
|
91 |
headers = {"Authorization": PEXELS_API_KEY}
|
92 |
response = requests.get(
|
93 |
-
f"https://api.pexels.com/videos/search?query={'+'.join(
|
94 |
headers=headers,
|
95 |
timeout=15
|
96 |
)
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
-
logger.error(f"Error
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
|
103 |
-
voz_archivo = "voz.mp3"
|
104 |
try:
|
105 |
-
guion = custom_script if custom_script
|
|
|
106 |
voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural'
|
107 |
-
|
108 |
-
# Generar audio
|
109 |
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)
|
110 |
audio = AudioFileClip(voz_archivo)
|
111 |
-
|
112 |
-
# Obtener videos
|
113 |
videos_data = buscar_videos_avanzado(prompt, guion)
|
114 |
if not videos_data:
|
115 |
raise Exception("No se encontraron videos")
|
116 |
-
|
117 |
-
# Procesar videos
|
118 |
clips = []
|
119 |
for video in videos_data[:3]:
|
120 |
video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0])
|
121 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
|
122 |
response = requests.get(video_file['link'], stream=True)
|
123 |
-
for chunk in response.iter_content(chunk_size=1024
|
124 |
temp_video.write(chunk)
|
125 |
clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration']))
|
126 |
clips.append(clip)
|
127 |
-
|
128 |
-
# Crear video final
|
129 |
video_final = concatenate_videoclips(clips)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
video_final = video_final.set_audio(audio)
|
131 |
-
|
132 |
output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
133 |
video_final.write_videofile(output_path, fps=24, threads=2)
|
134 |
return output_path
|
135 |
-
|
136 |
except Exception as e:
|
137 |
-
logger.error(f"Error cr铆tico: {e}")
|
138 |
return None
|
139 |
finally:
|
140 |
-
if os.path.exists(
|
141 |
-
os.remove(
|
|
|
|
|
|
|
142 |
|
143 |
-
# Gradio app
|
144 |
with gr.Blocks(title="Generador de Videos") as app:
|
145 |
with gr.Row():
|
146 |
with gr.Column():
|
147 |
prompt = gr.Textbox(label="Tema del video")
|
148 |
custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)")
|
149 |
voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0])
|
|
|
150 |
btn = gr.Button("Generar Video", variant="primary")
|
151 |
with gr.Column():
|
152 |
output = gr.Video(label="Resultado", format="mp4")
|
153 |
|
154 |
-
async def wrapper(p, cs, v):
|
155 |
-
return await crear_video_profesional(p, cs, VOICE_NAMES.index(v))
|
156 |
-
|
157 |
btn.click(
|
158 |
-
fn=
|
159 |
-
inputs=[prompt, custom_script, voz],
|
160 |
outputs=output
|
161 |
)
|
162 |
|
|
|
14 |
from transformers import pipeline
|
15 |
import torch
|
16 |
import asyncio
|
|
|
17 |
from nltk.tokenize import sent_tokenize
|
18 |
|
|
|
19 |
nltk.download('punkt', quiet=True)
|
20 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
|
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
24 |
MODEL_NAME = "DeepESP/gpt2-spanish"
|
25 |
|
|
|
|
|
26 |
async def get_voices():
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
+
voices = await edge_tts.list_voices()
|
29 |
+
voice_names = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in voices]
|
30 |
+
return voice_names, voices
|
31 |
+
except:
|
32 |
+
return ["Voz Predeterminada (Femenino, es-ES)"], [{'ShortName': 'es-ES-ElviraNeural'}]
|
|
|
|
|
33 |
|
34 |
+
VOICE_NAMES, VOICES = asyncio.run(get_voices())
|
35 |
|
36 |
def generar_guion_profesional(prompt):
|
37 |
try:
|
|
|
42 |
)
|
43 |
response = generator(
|
44 |
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
|
45 |
+
"La estructura debe incluir:\n"
|
46 |
+
"1. Introducci贸n atractiva\n"
|
47 |
+
"2. Tres secciones detalladas con subt铆tulos\n"
|
48 |
+
"3. Conclusi贸n impactante\n"
|
49 |
+
"Usa un estilo natural para narraci贸n:",
|
50 |
temperature=0.7,
|
51 |
top_k=50,
|
52 |
top_p=0.95,
|
|
|
57 |
raise ValueError("Guion demasiado breve")
|
58 |
return guion
|
59 |
except Exception as e:
|
60 |
+
logger.error(f"Error generando guion: {str(e)}")
|
61 |
+
temas = {
|
62 |
+
"historia": ["or铆genes", "eventos clave", "impacto actual"],
|
63 |
+
"tecnolog铆a": ["funcionamiento", "aplicaciones", "futuro"],
|
64 |
+
"ciencia": ["teor铆as", "evidencia", "implicaciones"],
|
65 |
+
"misterio": ["enigma", "teor铆as", "explicaciones"],
|
66 |
+
"arte": ["or铆genes", "caracter铆sticas", "influencia"]
|
67 |
+
}
|
68 |
+
categoria = "general"
|
69 |
+
for key in temas:
|
70 |
+
if key in prompt.lower():
|
71 |
+
categoria = key
|
72 |
+
break
|
73 |
+
puntos_clave = temas.get(categoria, ["aspectos importantes", "datos relevantes", "conclusiones"])
|
74 |
+
return f"""
|
75 |
+
隆Hola a todos! Bienvenidos a este an谩lisis completo sobre {prompt}.
|
76 |
+
En este video exploraremos a fondo este fascinante tema a trav茅s de tres secciones clave.
|
77 |
+
|
78 |
+
SECCI脫N 1: {puntos_clave[0].capitalize()}
|
79 |
+
Comenzaremos analizando los {puntos_clave[0]} fundamentales.
|
80 |
+
Esto nos permitir谩 entender mejor la base de {prompt}.
|
81 |
+
|
82 |
+
SECCI脫N 2: {puntos_clave[1].capitalize()}
|
83 |
+
En esta parte, examinaremos los {puntos_clave[1]} m谩s relevantes
|
84 |
+
y c贸mo se relacionan con el tema principal.
|
85 |
+
|
86 |
+
SECCI脫N 3: {puntos_clave[2].capitalize()}
|
87 |
+
Finalmente, exploraremos las {puntos_clave[2]}
|
88 |
+
y qu茅 significan para el futuro de este campo.
|
89 |
+
|
90 |
+
驴Listos para profundizar? 隆Empecemos!
|
91 |
+
"""
|
92 |
|
93 |
def buscar_videos_avanzado(prompt, guion, num_videos=5):
|
94 |
try:
|
95 |
oraciones = sent_tokenize(guion)
|
96 |
+
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y', 'que'])
|
97 |
tfidf = vectorizer.fit_transform(oraciones)
|
98 |
palabras = vectorizer.get_feature_names_out()
|
99 |
scores = np.asarray(tfidf.sum(axis=0)).ravel()
|
100 |
+
indices_importantes = np.argsort(scores)[-5:]
|
101 |
+
palabras_clave = [palabras[i] for i in indices_importantes]
|
|
|
102 |
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
|
103 |
+
todas_palabras = list(set(palabras_clave + palabras_prompt))[:5]
|
|
|
104 |
headers = {"Authorization": PEXELS_API_KEY}
|
105 |
response = requests.get(
|
106 |
+
f"https://api.pexels.com/videos/search?query={'+'.join(todas_palabras)}&per_page={num_videos}",
|
107 |
headers=headers,
|
108 |
timeout=15
|
109 |
)
|
110 |
+
videos = response.json().get('videos', [])
|
111 |
+
logger.info(f"Palabras clave usadas: {todas_palabras}")
|
112 |
+
videos_ordenados = sorted(
|
113 |
+
videos,
|
114 |
+
key=lambda x: x.get('width', 0) * x.get('height', 0),
|
115 |
+
reverse=True
|
116 |
+
)
|
117 |
+
return videos_ordenados[:num_videos]
|
118 |
except Exception as e:
|
119 |
+
logger.error(f"Error en b煤squeda de videos: {str(e)}")
|
120 |
+
response = requests.get(
|
121 |
+
f"https://api.pexels.com/videos/search?query={prompt}&per_page={num_videos}",
|
122 |
+
headers={"Authorization": PEXELS_API_KEY},
|
123 |
+
timeout=10
|
124 |
+
)
|
125 |
+
return response.json().get('videos', [])[:num_videos]
|
126 |
|
127 |
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
|
|
|
128 |
try:
|
129 |
+
guion = custom_script if custom_script else generar_guion_profesional(prompt)
|
130 |
+
logger.info(f"Guion generado ({len(guion.split())} palabras)")
|
131 |
voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural'
|
132 |
+
voz_archivo = "voz.mp3"
|
|
|
133 |
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)
|
134 |
audio = AudioFileClip(voz_archivo)
|
135 |
+
duracion_total = audio.duration
|
|
|
136 |
videos_data = buscar_videos_avanzado(prompt, guion)
|
137 |
if not videos_data:
|
138 |
raise Exception("No se encontraron videos")
|
|
|
|
|
139 |
clips = []
|
140 |
for video in videos_data[:3]:
|
141 |
video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0])
|
142 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
|
143 |
response = requests.get(video_file['link'], stream=True)
|
144 |
+
for chunk in response.iter_content(chunk_size=1024*1024):
|
145 |
temp_video.write(chunk)
|
146 |
clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration']))
|
147 |
clips.append(clip)
|
|
|
|
|
148 |
video_final = concatenate_videoclips(clips)
|
149 |
+
if musica:
|
150 |
+
musica_clip = AudioFileClip(musica.name)
|
151 |
+
if musica_clip.duration < duracion_total:
|
152 |
+
musica_clip = musica_clip.loop(duration=duracion_total)
|
153 |
+
else:
|
154 |
+
musica_clip = musica_clip.subclip(0, duracion_total)
|
155 |
+
audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)])
|
156 |
video_final = video_final.set_audio(audio)
|
|
|
157 |
output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
158 |
video_final.write_videofile(output_path, fps=24, threads=2)
|
159 |
return output_path
|
|
|
160 |
except Exception as e:
|
161 |
+
logger.error(f"Error cr铆tico: {str(e)}")
|
162 |
return None
|
163 |
finally:
|
164 |
+
if os.path.exists("voz.mp3"):
|
165 |
+
os.remove("voz.mp3")
|
166 |
+
|
167 |
+
def run_async_func(prompt, custom_script, voz_index, musica=None):
|
168 |
+
return asyncio.run(crear_video_profesional(prompt, custom_script, voz_index, musica))
|
169 |
|
|
|
170 |
with gr.Blocks(title="Generador de Videos") as app:
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
173 |
prompt = gr.Textbox(label="Tema del video")
|
174 |
custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)")
|
175 |
voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0])
|
176 |
+
musica = gr.File(label="M煤sica de fondo (opcional)", file_types=["audio"])
|
177 |
btn = gr.Button("Generar Video", variant="primary")
|
178 |
with gr.Column():
|
179 |
output = gr.Video(label="Resultado", format="mp4")
|
180 |
|
|
|
|
|
|
|
181 |
btn.click(
|
182 |
+
fn=lambda p, cs, v, m: asyncio.run(crear_video_profesional(p, cs, VOICE_NAMES.index(v), m)),
|
183 |
+
inputs=[prompt, custom_script, voz, musica],
|
184 |
outputs=output
|
185 |
)
|
186 |
|