Spaces:
Running
on
Zero
Running
on
Zero
#Original code can be found on: https://github.com/black-forest-labs/flux | |
from dataclasses import dataclass | |
import torch | |
from torch import Tensor, nn | |
from einops import rearrange, repeat | |
import comfy.ldm.common_dit | |
from comfy.ldm.flux.layers import ( | |
EmbedND, | |
timestep_embedding, | |
) | |
from .layers import ( | |
DoubleStreamBlock, | |
LastLayer, | |
SingleStreamBlock, | |
Approximator, | |
ChromaModulationOut, | |
) | |
class ChromaParams: | |
in_channels: int | |
out_channels: int | |
context_in_dim: int | |
hidden_size: int | |
mlp_ratio: float | |
num_heads: int | |
depth: int | |
depth_single_blocks: int | |
axes_dim: list | |
theta: int | |
patch_size: int | |
qkv_bias: bool | |
in_dim: int | |
out_dim: int | |
hidden_dim: int | |
n_layers: int | |
class Chroma(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): | |
super().__init__() | |
self.dtype = dtype | |
params = ChromaParams(**kwargs) | |
self.params = params | |
self.patch_size = params.patch_size | |
self.in_channels = params.in_channels | |
self.out_channels = params.out_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.in_dim = params.in_dim | |
self.out_dim = params.out_dim | |
self.hidden_dim = params.hidden_dim | |
self.n_layers = params.n_layers | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) | |
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) | |
# set as nn identity for now, will overwrite it later. | |
self.distilled_guidance_layer = Approximator( | |
in_dim=self.in_dim, | |
hidden_dim=self.hidden_dim, | |
out_dim=self.out_dim, | |
n_layers=self.n_layers, | |
dtype=dtype, device=device, operations=operations | |
) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
dtype=dtype, device=device, operations=operations | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
if final_layer: | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) | |
self.skip_mmdit = [] | |
self.skip_dit = [] | |
self.lite = False | |
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0): | |
# This function slices up the modulations tensor which has the following layout: | |
# single : num_single_blocks * 3 elements | |
# double_img : num_double_blocks * 6 elements | |
# double_txt : num_double_blocks * 6 elements | |
# final : 2 elements | |
if block_type == "final": | |
return (tensor[:, -2:-1, :], tensor[:, -1:, :]) | |
single_block_count = self.params.depth_single_blocks | |
double_block_count = self.params.depth | |
offset = 3 * idx | |
if block_type == "single": | |
return ChromaModulationOut.from_offset(tensor, offset) | |
# Double block modulations are 6 elements so we double 3 * idx. | |
offset *= 2 | |
if block_type in {"double_img", "double_txt"}: | |
# Advance past the single block modulations. | |
offset += 3 * single_block_count | |
if block_type == "double_txt": | |
# Advance past the double block img modulations. | |
offset += 6 * double_block_count | |
return ( | |
ChromaModulationOut.from_offset(tensor, offset), | |
ChromaModulationOut.from_offset(tensor, offset + 3), | |
) | |
raise ValueError("Bad block_type") | |
def forward_orig( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
guidance: Tensor = None, | |
control = None, | |
transformer_options={}, | |
attn_mask: Tensor = None, | |
) -> Tensor: | |
patches_replace = transformer_options.get("patches_replace", {}) | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
# distilled vector guidance | |
mod_index_length = 344 | |
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype) | |
# guidance = guidance * | |
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype) | |
# get all modulation index | |
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype) | |
# we need to broadcast the modulation index here so each batch has all of the index | |
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype) | |
# and we need to broadcast timestep and guidance along too | |
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype) | |
# then and only then we could concatenate it together | |
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype) | |
mod_vectors = self.distilled_guidance_layer(input_vec) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
blocks_replace = patches_replace.get("dit", {}) | |
for i, block in enumerate(self.double_blocks): | |
if i not in self.skip_mmdit: | |
double_mod = ( | |
self.get_modulations(mod_vectors, "double_img", idx=i), | |
self.get_modulations(mod_vectors, "double_txt", idx=i), | |
) | |
if ("double_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"], out["txt"] = block(img=args["img"], | |
txt=args["txt"], | |
vec=args["vec"], | |
pe=args["pe"], | |
attn_mask=args.get("attn_mask")) | |
return out | |
out = blocks_replace[("double_block", i)]({"img": img, | |
"txt": txt, | |
"vec": double_mod, | |
"pe": pe, | |
"attn_mask": attn_mask}, | |
{"original_block": block_wrap}) | |
txt = out["txt"] | |
img = out["img"] | |
else: | |
img, txt = block(img=img, | |
txt=txt, | |
vec=double_mod, | |
pe=pe, | |
attn_mask=attn_mask) | |
if control is not None: # Controlnet | |
control_i = control.get("input") | |
if i < len(control_i): | |
add = control_i[i] | |
if add is not None: | |
img += add | |
img = torch.cat((txt, img), 1) | |
for i, block in enumerate(self.single_blocks): | |
if i not in self.skip_dit: | |
single_mod = self.get_modulations(mod_vectors, "single", idx=i) | |
if ("single_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"] = block(args["img"], | |
vec=args["vec"], | |
pe=args["pe"], | |
attn_mask=args.get("attn_mask")) | |
return out | |
out = blocks_replace[("single_block", i)]({"img": img, | |
"vec": single_mod, | |
"pe": pe, | |
"attn_mask": attn_mask}, | |
{"original_block": block_wrap}) | |
img = out["img"] | |
else: | |
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask) | |
if control is not None: # Controlnet | |
control_o = control.get("output") | |
if i < len(control_o): | |
add = control_o[i] | |
if add is not None: | |
img[:, txt.shape[1] :, ...] += add | |
img = img[:, txt.shape[1] :, ...] | |
final_mod = self.get_modulations(mod_vectors, "final") | |
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs): | |
bs, c, h, w = x.shape | |
patch_size = 2 | |
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) | |
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size) | |
h_len = ((h + (patch_size // 2)) // patch_size) | |
w_len = ((w + (patch_size // 2)) // patch_size) | |
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) | |
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) | |
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) | |
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) | |
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w] | |