fhirflame / app.py
leksval
initial commit
a963d65
#!/usr/bin/env python3
"""
FhirFlame: Medical AI Technology Demonstration
MVP/Prototype Platform - Development & Testing Only
⚠️ IMPORTANT: This is a technology demonstration and MVP prototype for development,
testing, and educational purposes only. NOT approved for clinical use, patient data,
or production healthcare environments. Requires proper regulatory evaluation,
compliance review, and legal assessment before any real-world deployment.
Technology Stack Demonstration:
- Real-time medical text processing with CodeLlama 13B-Instruct
- FHIR R4/R5 compliance workflow prototypes
- Multi-provider AI routing architecture (Ollama, HuggingFace, Modal)
- Healthcare document processing with OCR capabilities
- DICOM medical imaging analysis demos
- Enterprise-grade security patterns (demonstration)
Architecture: Microservices with horizontal auto-scaling patterns
Security: Healthcare-grade infrastructure patterns (demo implementation)
Performance: Optimized for demonstration and development workflows
"""
import os
import asyncio
import json
import time
import uuid
from typing import Dict, Any, Optional
from pathlib import Path
# Import our core modules
from src.workflow_orchestrator import WorkflowOrchestrator
from src.enhanced_codellama_processor import EnhancedCodeLlamaProcessor
from src.fhir_validator import FhirValidator
from src.dicom_processor import dicom_processor
from src.monitoring import monitor
# Import database module for persistent job tracking
from database import db_manager
# Frontend UI components will be imported dynamically to avoid circular imports
# Global instances - using proper initialization to ensure services are ready
codellama = None
enhanced_codellama = None
fhir_validator = None
workflow_orchestrator = None
# ============================================================================
# SERVICE INITIALIZATION & STATUS TRACKING
# ============================================================================
# Service initialization status tracking for all AI providers and core components
# This ensures proper startup sequence and service health monitoring
service_status = {
"ollama_initialized": False, # Ollama local AI service status
"enhanced_codellama_initialized": False, # Enhanced CodeLlama processor status
"ollama_connection_url": None, # Active Ollama connection endpoint
"last_ollama_check": None # Timestamp of last Ollama health check
}
# ============================================================================
# TASK CANCELLATION & CONCURRENCY MANAGEMENT
# ============================================================================
# Task cancellation mechanism for graceful job termination
# Each task type can be independently cancelled without affecting others
cancellation_flags = {
"text_task": False, # Medical text processing cancellation flag
"file_task": False, # Document/file processing cancellation flag
"dicom_task": False # DICOM medical imaging cancellation flag
}
# Active running tasks storage for proper cancellation and cleanup
# Stores asyncio Task objects for each processing type
running_tasks = {
"text_task": None, # Current text processing asyncio Task
"file_task": None, # Current file processing asyncio Task
"dicom_task": None # Current DICOM processing asyncio Task
}
# Task queue system for handling multiple concurrent requests
# Allows queueing of pending tasks when system is busy
task_queues = {
"text_task": [], # Queued text processing requests
"file_task": [], # Queued file processing requests
"dicom_task": [] # Queued DICOM processing requests
}
# Current active job IDs for tracking and dashboard display
# Maps task types to their current PostgreSQL job record IDs
active_jobs = {
"text_task": None, # Active text processing job ID
"file_task": None, # Active file processing job ID
"dicom_task": None # Active DICOM processing job ID
}
import uuid
import datetime
class UnifiedJobManager:
"""Centralized job and metrics management for all FhirFlame processing with PostgreSQL persistence"""
def __init__(self):
# Keep minimal in-memory state for compatibility, but use PostgreSQL as primary store
self.jobs_database = {
"processing_jobs": [], # Legacy compatibility - now synced from PostgreSQL
"batch_jobs": [], # Legacy compatibility - now synced from PostgreSQL
"container_metrics": [], # Modal container scaling
"performance_metrics": [], # AI provider performance
"queue_statistics": { # Processing queue stats - calculated from PostgreSQL
"active_tasks": 0,
"completed_tasks": 0,
"failed_tasks": 0
},
"system_monitoring": [] # System performance
}
# Dashboard state - calculated from PostgreSQL
self.dashboard_state = {
"active_tasks": 0,
"files_processed": [],
"total_files": 0,
"successful_files": 0,
"failed_files": 0,
"failed_tasks": 0,
"processing_queue": {"active_tasks": 0, "completed_files": 0, "failed_files": 0},
"last_update": None
}
# Sync dashboard state from PostgreSQL on initialization
self._sync_dashboard_from_db()
def _sync_dashboard_from_db(self):
"""Sync dashboard state from PostgreSQL database"""
try:
metrics = db_manager.get_dashboard_metrics()
self.dashboard_state.update({
"active_tasks": metrics.get('active_jobs', 0),
"total_files": metrics.get('completed_jobs', 0),
"successful_files": metrics.get('successful_jobs', 0),
"failed_files": metrics.get('failed_jobs', 0),
"failed_tasks": metrics.get('failed_jobs', 0)
})
print(f"✅ Dashboard synced from PostgreSQL: {metrics}")
except Exception as e:
print(f"⚠️ Failed to sync dashboard from PostgreSQL: {e}")
def add_processing_job(self, job_type: str, name: str, details: dict = None) -> str:
"""Record start of any type of processing job in PostgreSQL"""
job_id = str(uuid.uuid4())
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
job_record = {
"id": job_id,
"job_type": job_type, # "text", "file", "dicom", "batch"
"name": name[:100], # Truncate long names
"status": "processing",
"success": None,
"processing_time": None,
"error_message": None,
"entities_found": 0,
"result_data": details or {},
"text_input": details.get("text_input") if details else None,
"file_path": details.get("file_path") if details else None,
"workflow_type": details.get("workflow_type") if details else None
}
# Save to PostgreSQL
db_success = db_manager.add_job(job_record)
if db_success:
# Also add to in-memory for legacy compatibility
legacy_job = {
"job_id": job_id,
"job_type": job_type,
"name": name[:100],
"status": "started",
"success": None,
"start_time": timestamp,
"completion_time": None,
"processing_time": None,
"error": None,
"entities_found": 0,
"details": details or {}
}
self.jobs_database["processing_jobs"].append(legacy_job)
# Update dashboard state and queue statistics
self.dashboard_state["active_tasks"] += 1
self.jobs_database["queue_statistics"]["active_tasks"] += 1
self.dashboard_state["last_update"] = timestamp
print(f"✅ Job {job_id[:8]} added to PostgreSQL: {name[:30]}...")
else:
print(f"❌ Failed to add job {job_id[:8]} to PostgreSQL")
return job_id
def update_job_completion(self, job_id: str, success: bool, metrics: dict = None):
"""Update job completion with metrics in PostgreSQL"""
completion_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Prepare update data for PostgreSQL
updates = {
"status": "completed",
"success": success,
"completed_at": completion_time
}
if metrics:
updates["processing_time"] = metrics.get("processing_time", "N/A")
updates["entities_found"] = metrics.get("entities_found", 0)
updates["error_message"] = metrics.get("error", None)
updates["result_data"] = metrics.get("details", {})
# Handle cancellation flag
if metrics.get("cancelled", False):
updates["status"] = "cancelled"
updates["error_message"] = "Cancelled by user"
# Update in PostgreSQL
db_success = db_manager.update_job(job_id, updates)
if db_success:
# Also update in-memory for legacy compatibility
for job in self.jobs_database["processing_jobs"]:
if job["job_id"] == job_id:
job["status"] = updates["status"]
job["success"] = success
job["completion_time"] = completion_time
if metrics:
job["processing_time"] = metrics.get("processing_time", "N/A")
job["entities_found"] = metrics.get("entities_found", 0)
job["error"] = metrics.get("error", None)
job["details"].update(metrics.get("details", {}))
# Handle cancellation flag
if metrics.get("cancelled", False):
job["status"] = "cancelled"
job["error"] = "Cancelled by user"
break
# Update dashboard state
self.dashboard_state["active_tasks"] = max(0, self.dashboard_state["active_tasks"] - 1)
self.dashboard_state["total_files"] += 1
if success:
self.dashboard_state["successful_files"] += 1
self.jobs_database["queue_statistics"]["completed_tasks"] += 1
else:
self.dashboard_state["failed_files"] += 1
self.dashboard_state["failed_tasks"] += 1
self.jobs_database["queue_statistics"]["failed_tasks"] += 1
self.jobs_database["queue_statistics"]["active_tasks"] = max(0,
self.jobs_database["queue_statistics"]["active_tasks"] - 1)
# Update files_processed list
job_name = "Unknown"
job_type = "Processing"
for job in self.jobs_database["processing_jobs"]:
if job["job_id"] == job_id:
job_name = job["name"]
job_type = job["job_type"].title() + " Processing"
break
file_info = {
"filename": job_name,
"file_type": job_type,
"success": success,
"processing_time": updates.get("processing_time", "N/A"),
"timestamp": completion_time,
"error": updates.get("error_message"),
"entities_found": updates.get("entities_found", 0)
}
self.dashboard_state["files_processed"].append(file_info)
self.dashboard_state["last_update"] = completion_time
# Log completion for debugging
status_icon = "✅" if success else "❌" if not metrics.get("cancelled", False) else "⏹️"
print(f"{status_icon} Job {job_id[:8]} completed in PostgreSQL: {job_name[:30]}... - Success: {success}")
else:
print(f"❌ Failed to update job {job_id[:8]} in PostgreSQL")
def add_batch_job(self, batch_type: str, batch_size: int, workflow_type: str) -> str:
"""Record start of batch processing job"""
job_id = str(uuid.uuid4())
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
batch_record = {
"job_id": job_id,
"job_type": "batch",
"batch_type": batch_type,
"batch_size": batch_size,
"workflow_type": workflow_type,
"status": "started",
"start_time": timestamp,
"completion_time": None,
"processed_count": 0,
"success_count": 0,
"failed_count": 0,
"documents": []
}
self.jobs_database["batch_jobs"].append(batch_record)
self.dashboard_state["active_tasks"] += 1
self.dashboard_state["last_update"] = f"Batch processing started: {batch_size} {workflow_type} documents"
return job_id
def update_batch_progress(self, job_id: str, processed_count: int, success_count: int, failed_count: int):
"""Update batch processing progress"""
for batch in self.jobs_database["batch_jobs"]:
if batch["job_id"] == job_id:
batch["processed_count"] = processed_count
batch["success_count"] = success_count
batch["failed_count"] = failed_count
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.dashboard_state["last_update"] = f"Batch processing: {processed_count}/{batch['batch_size']} documents"
break
def get_dashboard_status(self) -> str:
"""Get current dashboard status string"""
if self.dashboard_state["total_files"] == 0:
return "📊 No files processed yet"
return f"📊 Files: {self.dashboard_state['total_files']} | Success: {self.dashboard_state['successful_files']} | Failed: {self.dashboard_state['failed_files']} | Active: {self.dashboard_state['active_tasks']}"
def get_dashboard_metrics(self) -> list:
"""Get file processing metrics for DataFrame display from PostgreSQL"""
# Get metrics directly from PostgreSQL database
metrics = db_manager.get_dashboard_metrics()
total_jobs = metrics.get('total_jobs', 0)
completed_jobs = metrics.get('completed_jobs', 0)
success_jobs = metrics.get('successful_jobs', 0)
failed_jobs = metrics.get('failed_jobs', 0)
active_jobs = metrics.get('active_jobs', 0)
# Update dashboard state with PostgreSQL data
self.dashboard_state["total_files"] = completed_jobs
self.dashboard_state["successful_files"] = success_jobs
self.dashboard_state["failed_files"] = failed_jobs
self.dashboard_state["active_tasks"] = active_jobs
success_rate = (success_jobs / max(1, completed_jobs)) * 100 if completed_jobs else 0
last_update = self.dashboard_state["last_update"] or "Never"
print(f"🔍 DEBUG get_dashboard_metrics from PostgreSQL: Total={total_jobs}, Completed={completed_jobs}, Success={success_jobs}, Failed={failed_jobs}, Active={active_jobs}")
return [
["Total Files", completed_jobs],
["Success Rate", f"{success_rate:.1f}%"],
["Failed Files", failed_jobs],
["Completed Files", success_jobs],
["Active Tasks", active_jobs],
["Last Update", last_update]
]
def get_processing_queue(self) -> list:
"""Get processing queue for DataFrame display"""
return [
["Active Tasks", self.dashboard_state["active_tasks"]],
["Completed Files", self.dashboard_state["successful_files"]],
["Failed Files", self.dashboard_state["failed_files"]]
]
def get_jobs_history(self) -> list:
"""Get comprehensive jobs history for DataFrame display from PostgreSQL"""
jobs_data = []
# Get jobs from PostgreSQL database
recent_jobs = db_manager.get_jobs_history(limit=20)
print(f"🔍 DEBUG get_jobs_history from PostgreSQL: Retrieved {len(recent_jobs)} jobs")
if recent_jobs:
print(f"🔍 DEBUG: Sample jobs from PostgreSQL:")
for i, job in enumerate(recent_jobs[:3]):
status = job.get('status', 'unknown')
success = job.get('success', None)
print(f" Job {i}: {job.get('name', 'Unknown')[:20]} | Status: {status} | Success: {success} | Type: {job.get('job_type', 'Unknown')}")
# Process jobs from PostgreSQL
for job in recent_jobs:
job_type = job.get("job_type", "Unknown")
job_name = job.get("name", "Unknown")
# Determine job category
if job_type == "batch":
category = "🔄 Batch Job"
elif job_type == "text":
category = "📝 Text Processing"
elif job_type == "dicom":
category = "🏥 DICOM Analysis"
elif job_type == "file":
category = "📄 Document Processing"
else:
category = "⚙️ Processing"
# Determine status with better handling
if job.get("status") == "cancelled":
status = "⏹️ Cancelled"
elif job.get("success") is True:
status = "✅ Success"
elif job.get("success") is False:
status = "❌ Failed"
elif job.get("status") == "processing":
status = "🔄 Processing"
else:
status = "⏳ Pending"
job_row = [
job_name,
category,
status,
job.get("processing_time", "N/A")
]
jobs_data.append(job_row)
print(f"🔍 DEBUG: Added PostgreSQL job row: {job_row}")
print(f"🔍 DEBUG: Final jobs_data length from PostgreSQL: {len(jobs_data)}")
return jobs_data
# Create global instance
job_manager = UnifiedJobManager()
# Expose dashboard_state as reference to job_manager.dashboard_state
dashboard_state = job_manager.dashboard_state
def get_codellama():
"""Lazy load CodeLlama processor with proper Ollama initialization checks"""
global codellama, service_status
if codellama is None:
print("🔄 Initializing CodeLlama processor with Ollama connection check...")
# Check Ollama availability first
ollama_ready = _check_ollama_service()
service_status["ollama_initialized"] = ollama_ready
service_status["last_ollama_check"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if not ollama_ready:
print("⚠️ Ollama service not ready - CodeLlama will have limited functionality")
from src.codellama_processor import CodeLlamaProcessor
codellama = CodeLlamaProcessor()
print(f"✅ CodeLlama processor initialized (Ollama: {'Ready' if ollama_ready else 'Not Ready'})")
return codellama
def get_enhanced_codellama():
"""Lazy load Enhanced CodeLlama processor with provider initialization checks"""
global enhanced_codellama, service_status
if enhanced_codellama is None:
print("🔄 Initializing Enhanced CodeLlama processor with provider checks...")
# Initialize with proper provider status tracking
enhanced_codellama = EnhancedCodeLlamaProcessor()
service_status["enhanced_codellama_initialized"] = True
# Check provider availability after initialization
router = enhanced_codellama.router
print(f"✅ Enhanced CodeLlama processor ready:")
print(f" Ollama: {'✅ Ready' if router.ollama_available else '❌ Not Ready'}")
print(f" HuggingFace: {'✅ Ready' if router.hf_available else '❌ Not Ready'}")
print(f" Modal: {'✅ Ready' if router.modal_available else '❌ Not Ready'}")
return enhanced_codellama
def _check_ollama_service():
"""Check if Ollama service is properly initialized and accessible with model status"""
import requests
import os
ollama_url = os.getenv("OLLAMA_BASE_URL", "http://ollama:11434")
use_real_ollama = os.getenv("USE_REAL_OLLAMA", "true").lower() == "true"
model_name = os.getenv("OLLAMA_MODEL", "codellama:13b-instruct")
if not use_real_ollama:
print("📝 Ollama disabled by configuration")
return False
# Try multiple connection attempts with different URLs
urls_to_try = [ollama_url]
if "ollama:11434" in ollama_url:
urls_to_try.append("http://localhost:11434")
elif "localhost:11434" in ollama_url:
urls_to_try.append("http://ollama:11434")
for attempt in range(3): # Try 3 times with delays
for url in urls_to_try:
try:
response = requests.get(f"{url}/api/version", timeout=5)
if response.status_code == 200:
print(f"✅ Ollama service ready at {url}")
service_status["ollama_connection_url"] = url
# Check model status
model_status = _check_ollama_model_status(url, model_name)
service_status["model_status"] = model_status
service_status["model_name"] = model_name
if model_status == "available":
print(f"✅ Model {model_name} is ready")
return True
elif model_status == "downloading":
print(f"🔄 Model {model_name} is downloading (7.4GB)...")
return False
else:
print(f"❌ Model {model_name} not found")
return False
except Exception as e:
print(f"⚠️ Ollama check failed for {url}: {e}")
continue
import time
time.sleep(2) # Wait between attempts
print("❌ All Ollama connection attempts failed")
return False
def _check_ollama_model_status(url: str, model_name: str) -> str:
"""Check if specific model is available in Ollama"""
import requests
try:
# Check if model is in the list of downloaded models
response = requests.get(f"{url}/api/tags", timeout=10)
if response.status_code == 200:
models_data = response.json()
models = models_data.get("models", [])
# Check if our model is in the list
for model in models:
if model.get("name", "").startswith(model_name.split(":")[0]):
return "available"
# Model not found - it's likely downloading if Ollama is responsive
return "downloading"
else:
return "unknown"
except Exception as e:
print(f"⚠️ Model status check failed: {e}")
return "unknown"
def get_ollama_status() -> dict:
"""Get current Ollama and model status for UI display"""
model_name = os.getenv("OLLAMA_MODEL", "codellama:13b-instruct")
model_status = service_status.get("model_status", "unknown")
status_messages = {
"available": f"✅ {model_name} ready for processing",
"downloading": f"🔄 {model_name} downloading (7.4GB). Please wait...",
"unknown": f"⚠️ {model_name} status unknown"
}
return {
"service_available": service_status.get("ollama_initialized", False),
"model_status": model_status,
"model_name": model_name,
"message": status_messages.get(model_status, f"⚠️ Unknown status: {model_status}")
}
def get_fhir_validator():
"""Lazy load FHIR validator"""
global fhir_validator
if fhir_validator is None:
print("🔄 Initializing FHIR validator...")
fhir_validator = FhirValidator()
print("✅ FHIR validator ready")
return fhir_validator
def get_workflow_orchestrator():
"""Lazy load workflow orchestrator"""
global workflow_orchestrator
if workflow_orchestrator is None:
print("🔄 Initializing workflow orchestrator...")
workflow_orchestrator = WorkflowOrchestrator()
print("✅ Workflow orchestrator ready")
return workflow_orchestrator
def get_current_model_display():
"""Get current model name from environment variables for display"""
import os
# Try to get from OLLAMA_MODEL first (most common)
ollama_model = os.getenv("OLLAMA_MODEL", "")
if ollama_model:
# Format for display (e.g., "codellama:13b-instruct" -> "CodeLlama 13B-Instruct")
model_parts = ollama_model.split(":")
if len(model_parts) >= 2:
model_name = model_parts[0].title()
model_size = model_parts[1].upper().replace("B-", "B ").replace("-", " ").title()
return f"{model_name} {model_size}"
else:
return ollama_model.title()
# Fallback to other model configs
if os.getenv("MISTRAL_API_KEY"):
return "Mistral Large"
elif os.getenv("HF_TOKEN"):
return "HuggingFace Transformers"
elif os.getenv("MODAL_TOKEN_ID"):
return "Modal Labs GPU"
else:
return "CodeLlama 13B-Instruct" # Default fallback
def get_simple_agent_status():
"""Get comprehensive system status including APIs and configurations"""
global codellama, enhanced_codellama, fhir_validator, workflow_orchestrator
# Core component status
codellama_status = "✅ Ready" if codellama is not None else "⏳ On-demand loading"
enhanced_status = "✅ Ready" if enhanced_codellama is not None else "⏳ On-demand loading"
fhir_status = "✅ Ready" if fhir_validator is not None else "⏳ On-demand loading"
workflow_status = "✅ Ready" if workflow_orchestrator is not None else "⏳ On-demand loading"
dicom_status = "✅ Available" if dicom_processor else "❌ Not available"
# API and service status
mistral_api_key = os.getenv("MISTRAL_API_KEY", "")
mistral_status = "✅ Configured" if mistral_api_key else "❌ Missing API key"
# Use enhanced processor availability check for Ollama
ollama_status = "❌ Not available locally"
try:
# Check using the same logic as enhanced processor
ollama_url = os.getenv("OLLAMA_BASE_URL", "http://ollama:11434")
use_real_ollama = os.getenv("USE_REAL_OLLAMA", "true").lower() == "true"
if use_real_ollama:
import requests
# Try both docker service name and localhost
urls_to_try = [ollama_url]
if "ollama:11434" in ollama_url:
urls_to_try.append("http://localhost:11434")
elif "localhost:11434" in ollama_url:
urls_to_try.append("http://ollama:11434")
for url in urls_to_try:
try:
response = requests.get(f"{url}/api/version", timeout=2)
if response.status_code == 200:
ollama_status = "✅ Available"
break
except:
continue
# If configured but can't reach, assume it's starting up
if ollama_status == "❌ Not available locally" and use_real_ollama:
ollama_status = "⚠️ Configured (starting up)"
except:
pass
# DICOM processing status
try:
import pydicom
dicom_lib_status = "✅ pydicom available"
except ImportError:
dicom_lib_status = "⚠️ pydicom not installed (fallback mode)"
# Modal Labs status
modal_token = os.getenv("MODAL_TOKEN_ID", "")
modal_status = "✅ Configured" if modal_token else "❌ Not configured"
# HuggingFace status using enhanced processor logic
hf_token = os.getenv("HF_TOKEN", "")
if not hf_token:
hf_status = "❌ No token (set HF_TOKEN)"
elif not hf_token.startswith("hf_"):
hf_status = "❌ Invalid token format"
else:
try:
# Use the same validation as enhanced processor
from huggingface_hub import HfApi
api = HfApi(token=hf_token)
user_info = api.whoami()
if user_info and 'name' in user_info:
hf_status = f"✅ Authenticated as {user_info['name']}"
else:
hf_status = "❌ Authentication failed"
except ImportError:
hf_status = "❌ huggingface_hub not installed"
except Exception as e:
hf_status = f"❌ Error: {str(e)[:30]}..."
status_html = f"""
<div class="system-status-container" style="padding: 20px; border-radius: 8px; border: 1px solid var(--border-color-primary, #e5e7eb); background: var(--background-fill-primary, #ffffff); color: var(--body-text-color, #374151);">
<h3 style="color: var(--body-text-color, #374151); margin-bottom: 20px;">🔧 System Components Status</h3>
<div style="margin-bottom: 15px;">
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">Core Processing Components</h4>
<p><strong>CodeLlama Processor:</strong> <span style="color: #059669;">{codellama_status}</span></p>
<p><strong>Enhanced Processor:</strong> <span style="color: #059669;">{enhanced_status}</span></p>
<p><strong>FHIR Validator:</strong> <span style="color: #059669;">{fhir_status}</span></p>
<p><strong>Workflow Orchestrator:</strong> <span style="color: #059669;">{workflow_status}</span></p>
<p><strong>DICOM Processor:</strong> <span style="color: #059669;">{dicom_status}</span></p>
</div>
<div style="margin-bottom: 15px;">
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">AI Provider APIs</h4>
<p><strong>Mistral API:</strong> <span style="color: {'#059669' if mistral_api_key else '#dc2626'};">{mistral_status}</span></p>
<p><strong>Ollama Local:</strong> <span style="color: {'#059669' if '✅' in ollama_status else '#dc2626'};">{ollama_status}</span></p>
<p><strong>Modal Labs GPU:</strong> <span style="color: {'#059669' if modal_token else '#dc2626'};">{modal_status}</span></p>
<p><strong>HuggingFace API:</strong> <span style="color: {'#059669' if hf_token else '#dc2626'};">{hf_status}</span></p>
</div>
<div style="margin-bottom: 15px;">
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">Medical Processing</h4>
<p><strong>DICOM Library:</strong> <span style="color: {'#059669' if '✅' in dicom_lib_status else '#B71C1C'};">{dicom_lib_status}</span></p>
<p><strong>FHIR R4 Compliance:</strong> <span style="color: #059669;">✅ Active</span></p>
<p><strong>FHIR R5 Compliance:</strong> <span style="color: #059669;">✅ Active</span></p>
<p><strong>Medical Entity Extraction:</strong> <span style="color: #059669;">✅ Ready</span></p>
<p><strong>OCR Processing:</strong> <span style="color: #059669;">✅ Integrated</span></p>
</div>
<div>
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">System Status</h4>
<p><strong>Overall Status:</strong> <span style="color: #16a34a;">🟢 Operational</span></p>
<p><strong>Current Model:</strong> <span style="color: #2563eb;">{get_current_model_display()}</span></p>
<p><strong>Processing Mode:</strong> <span style="color: #2563eb;">Multi-Provider Dynamic Scaling</span></p>
<p><strong>Architecture:</strong> <span style="color: #2563eb;">Lazy Loading + Frontend/Backend Separation</span></p>
</div>
</div>
"""
return status_html
# Processing Functions
async def _process_text_async(text, enable_fhir):
"""Async text processing that can be cancelled"""
global cancellation_flags, running_tasks
# Check for cancellation before processing
if cancellation_flags["text_task"]:
raise asyncio.CancelledError("Text processing cancelled")
# Use Enhanced CodeLlama processor directly (with our Ollama fixes)
try:
processor = get_enhanced_codellama()
method_name = "Enhanced CodeLlama (Multi-Provider)"
result = await processor.process_document(
medical_text=text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir
)
# Check for cancellation after processing
if cancellation_flags["text_task"]:
raise asyncio.CancelledError("Text processing cancelled")
# Get the actual provider used from the result
actual_provider = result.get("provider_metadata", {}).get("provider_used", "Enhanced Processor")
method_name = f"Enhanced CodeLlama ({actual_provider.title()})"
return result, method_name
except Exception as e:
print(f"⚠️ Enhanced CodeLlama processing failed: {e}")
# If enhanced processor fails, try basic CodeLlama as fallback
try:
processor = get_codellama()
method_name = "CodeLlama (Basic Fallback)"
result = await processor.process_document(
medical_text=text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir
)
# Check for cancellation after processing
if cancellation_flags["text_task"]:
raise asyncio.CancelledError("Text processing cancelled")
return result, method_name
except Exception as fallback_error:
print(f"❌ HuggingFace fallback also failed: {fallback_error}")
# Return a basic result structure instead of raising exception
return {
"extracted_data": {"error": "Processing failed", "patient": "Unknown Patient", "conditions": [], "medications": []},
"metadata": {"model_used": "error_fallback", "processing_time": 0}
}, "Error (Both Failed)"
def process_text_only(text, enable_fhir=True):
"""Process text with CodeLlama processor"""
global cancellation_flags, running_tasks
print(f"🔥 DEBUG: process_text_only called with text length: {len(text) if text else 0}")
if not text.strip():
return "❌ Please enter some medical text", {}, {}
# FORCE JOB RECORDING - Always record job start with error handling
job_id = None
try:
job_id = job_manager.add_processing_job("text", text[:50], {"enable_fhir": enable_fhir})
active_jobs["text_task"] = job_id
print(f"✅ DEBUG: Job {job_id[:8]} recorded successfully")
except Exception as job_error:
print(f"❌ DEBUG: Failed to record job: {job_error}")
# Create fallback job_id to continue processing
job_id = "fallback-" + str(uuid.uuid4())[:8]
try:
# Reset cancellation flag at start
cancellation_flags["text_task"] = False
start_time = time.time()
monitor.log_event("text_processing_start", {"text_length": len(text)})
# Check for cancellation early
if cancellation_flags["text_task"]:
job_manager.update_job_completion(job_id, False, {"error": "Cancelled by user"})
return "⏹️ Processing cancelled", {}, {}
# Run async processing with proper cancellation handling
async def run_with_cancellation():
task = asyncio.create_task(_process_text_async(text, enable_fhir))
running_tasks["text_task"] = task
try:
return await task
finally:
if "text_task" in running_tasks:
del running_tasks["text_task"]
result, method_name = asyncio.run(run_with_cancellation())
# Calculate processing time and extract results
processing_time = time.time() - start_time
# Extract results for display
# Handle extracted_data - it might be a dict or JSON string
extracted_data_raw = result.get("extracted_data", {})
if isinstance(extracted_data_raw, str):
try:
entities = json.loads(extracted_data_raw)
except json.JSONDecodeError:
entities = {}
else:
entities = extracted_data_raw
# Check if processing actually failed
processing_failed = (
isinstance(entities, dict) and entities.get("error") == "Processing failed" or
result.get("metadata", {}).get("error") == "All providers failed" or
method_name == "Error (Both Failed)" or
result.get("failover_metadata", {}).get("complete_failure", False)
)
if processing_failed:
# Processing failed - return error status
providers_tried = entities.get("providers_tried", ["ollama", "huggingface"]) if isinstance(entities, dict) else ["unknown"]
error_msg = entities.get("error", "Processing failed") if isinstance(entities, dict) else "Processing failed"
status = f"❌ **Processing Failed**\n\n📝 **Text:** {len(text)} characters\n⚠️ **Error:** {error_msg}\n🔄 **Providers Tried:** {', '.join(providers_tried)}\n💡 **Note:** All available AI providers are currently unavailable"
# FORCE RECORD failed job completion with error handling
try:
if job_id:
job_manager.update_job_completion(job_id, False, {
"processing_time": f"{processing_time:.2f}s",
"error": error_msg,
"providers_tried": providers_tried
})
print(f"✅ DEBUG: Failed job {job_id[:8]} recorded successfully")
else:
print("❌ DEBUG: No job_id to record failure")
except Exception as completion_error:
print(f"❌ DEBUG: Failed to record job completion: {completion_error}")
monitor.log_event("text_processing_failed", {"error": error_msg, "providers_tried": providers_tried})
return status, entities, {}
else:
# Processing succeeded
status = f"✅ **Processing Complete!**\n\nProcessed {len(text)} characters using **{method_name}**"
fhir_resources = result.get("fhir_bundle", {}) if enable_fhir else {}
# FORCE RECORD successful job completion with error handling
try:
if job_id:
job_manager.update_job_completion(job_id, True, {
"processing_time": f"{processing_time:.2f}s",
"entities_found": len(entities) if isinstance(entities, dict) else 0,
"method": method_name
})
print(f"✅ DEBUG: Success job {job_id[:8]} recorded successfully")
else:
print("❌ DEBUG: No job_id to record success")
except Exception as completion_error:
print(f"❌ DEBUG: Failed to record job completion: {completion_error}")
# Clear active job tracking
active_jobs["text_task"] = None
monitor.log_event("text_processing_success", {"entities_found": len(entities), "method": method_name})
return status, entities, fhir_resources
except asyncio.CancelledError:
job_manager.update_job_completion(job_id, False, {"error": "Processing cancelled"})
active_jobs["text_task"] = None
monitor.log_event("text_processing_cancelled", {})
return "⏹️ Processing cancelled", {}, {}
except Exception as e:
job_manager.update_job_completion(job_id, False, {"error": str(e)})
active_jobs["text_task"] = None
monitor.log_event("text_processing_error", {"error": str(e)})
return f"❌ Processing failed: {str(e)}", {}, {}
async def _process_file_async(file, enable_mistral_ocr, enable_fhir):
"""Async file processing that can be cancelled"""
global cancellation_flags, running_tasks
# First, extract text from the file using OCR
from src.file_processor import local_processor
with open(file.name, 'rb') as f:
document_bytes = f.read()
# Track actual OCR method used
actual_ocr_method = None
# Use local processor for OCR extraction
if enable_mistral_ocr:
# Try Mistral OCR first if enabled
try:
extracted_text = await local_processor._extract_with_mistral(document_bytes)
actual_ocr_method = "mistral_api"
except Exception as e:
print(f"⚠️ Mistral OCR failed, falling back to local OCR: {e}")
# Fallback to local OCR
ocr_result = await local_processor.process_document(document_bytes, "user", file.name)
extracted_text = ocr_result.get('extracted_text', '')
actual_ocr_method = "local_processor"
else:
# Use local OCR
ocr_result = await local_processor.process_document(document_bytes, "user", file.name)
extracted_text = ocr_result.get('extracted_text', '')
actual_ocr_method = "local_processor"
# Check for cancellation after OCR
if cancellation_flags["file_task"]:
raise asyncio.CancelledError("File processing cancelled")
# Process the extracted text using CodeLlama with HuggingFace fallback
# Check for cancellation before processing
if cancellation_flags["file_task"]:
raise asyncio.CancelledError("File processing cancelled")
# Try CodeLlama processor first
try:
processor = get_codellama()
method_name = "CodeLlama (Ollama)"
result = await processor.process_document(
medical_text=extracted_text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir,
source_metadata={"extraction_method": actual_ocr_method}
)
except Exception as e:
print(f"⚠️ CodeLlama processing failed: {e}, falling back to HuggingFace")
# Fallback to Enhanced CodeLlama (HuggingFace)
try:
processor = get_enhanced_codellama()
method_name = "HuggingFace (Fallback)"
result = await processor.process_document(
medical_text=extracted_text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir,
source_metadata={"extraction_method": actual_ocr_method}
)
except Exception as fallback_error:
print(f"❌ HuggingFace fallback also failed: {fallback_error}")
# Return a basic result structure instead of raising exception
result = {
"extracted_data": {"error": "Processing failed", "patient": "Unknown Patient", "conditions": [], "medications": []},
"metadata": {"model_used": "error_fallback", "processing_time": 0}
}
method_name = "Error (Both Failed)"
# Check for cancellation after processing
if cancellation_flags["file_task"]:
raise asyncio.CancelledError("File processing cancelled")
return result, method_name, extracted_text, actual_ocr_method
def process_file_only(file, enable_mistral_ocr=True, enable_fhir=True):
"""Process uploaded file with CodeLlama processor and optional Mistral OCR"""
global cancellation_flags
if not file:
return "❌ Please upload a file", {}, {}
# Record job start
job_id = job_manager.add_processing_job("file", file.name, {
"enable_mistral_ocr": enable_mistral_ocr,
"enable_fhir": enable_fhir
})
active_jobs["file_task"] = job_id
try:
# Reset cancellation flag at start
cancellation_flags["file_task"] = False
monitor.log_event("file_processing_start", {"filename": file.name})
# Check for cancellation early
if cancellation_flags["file_task"]:
job_manager.update_job_completion(job_id, False, {"error": "Cancelled by user"})
return "⏹️ File processing cancelled", {}, {}
import time
start_time = time.time()
# Process the file with cancellation support
try:
# Run async processing with proper cancellation handling
async def run_with_cancellation():
task = asyncio.create_task(_process_file_async(file, enable_mistral_ocr, enable_fhir))
running_tasks["file_task"] = task
try:
return await task
finally:
if "file_task" in running_tasks:
del running_tasks["file_task"]
result, method_name, extracted_text, actual_ocr_method = asyncio.run(run_with_cancellation())
except asyncio.CancelledError:
job_manager.update_job_completion(job_id, False, {"error": "Processing cancelled"})
active_jobs["file_task"] = None
return "⏹️ File processing cancelled", {}, {}
processing_time = time.time() - start_time
# Enhanced status message with actual OCR information
ocr_method_display = "Mistral OCR (Advanced)" if actual_ocr_method == "mistral_api" else "Local OCR (Standard)"
status = f"✅ **File Processing Complete!**\n\n📁 **File:** {file.name}\n🔍 **OCR Method:** {ocr_method_display}\n🤖 **AI Processor:** {method_name}\n⏱️ **Processing Time:** {processing_time:.2f}s"
# Handle extracted_data - it might be a dict or JSON string
extracted_data_raw = result.get("extracted_data", {})
if isinstance(extracted_data_raw, str):
try:
entities = json.loads(extracted_data_raw)
except json.JSONDecodeError:
entities = {}
else:
entities = extracted_data_raw
fhir_resources = result.get("fhir_bundle", {}) if enable_fhir else {}
# Record successful job completion
job_manager.update_job_completion(job_id, True, {
"processing_time": f"{processing_time:.2f}s",
"entities_found": len(entities) if isinstance(entities, dict) else 0,
"method": method_name
})
# Clear active job tracking
active_jobs["file_task"] = None
monitor.log_event("file_processing_success", {"filename": file.name, "method": method_name})
return status, entities, fhir_resources
except Exception as e:
job_manager.update_job_completion(job_id, False, {"error": str(e)})
active_jobs["file_task"] = None
monitor.log_event("file_processing_error", {"error": str(e)})
return f"❌ File processing failed: {str(e)}", {}, {}
def process_dicom_only(dicom_file):
"""Process DICOM files using the real DICOM processor"""
global cancellation_flags
if not dicom_file:
return "❌ Please upload a DICOM file", {}, {}
# Record job start
job_id = job_manager.add_processing_job("dicom", dicom_file.name)
active_jobs["dicom_task"] = job_id
try:
# Reset cancellation flag at start
cancellation_flags["dicom_task"] = False
# Check for cancellation early
if cancellation_flags["dicom_task"]:
job_manager.update_job_completion(job_id, False, {"error": "Cancelled by user"})
return "⏹️ DICOM processing cancelled", {}, {}
monitor.log_event("dicom_processing_start", {"filename": dicom_file.name})
import time
start_time = time.time()
# Process DICOM file using the real processor with cancellation support
async def run_dicom_with_cancellation():
task = asyncio.create_task(dicom_processor.process_dicom_file(dicom_file.name))
running_tasks["dicom_task"] = task
try:
return await task
finally:
if "dicom_task" in running_tasks:
del running_tasks["dicom_task"]
try:
result = asyncio.run(run_dicom_with_cancellation())
except asyncio.CancelledError:
job_manager.update_job_completion(job_id, False, {"error": "Processing cancelled"})
active_jobs["dicom_task"] = None
return "⏹️ DICOM processing cancelled", {}, {}
processing_time = time.time() - start_time
# Extract processing results - fix structure mismatch
if result.get("status") == "success":
# Format the status message with real data from DICOM processor
fhir_bundle = result.get("fhir_bundle", {})
patient_name = result.get("patient_name", "Unknown")
study_description = result.get("study_description", "Unknown")
modality = result.get("modality", "Unknown")
file_size = result.get("file_size", 0)
status = f"""✅ **DICOM Processing Complete!**
📁 **File:** {os.path.basename(dicom_file.name)}
📊 **Size:** {file_size} bytes
⏱️ **Processing Time:** {processing_time:.2f}s
🏥 **Modality:** {modality}
👤 **Patient:** {patient_name}
📋 **Study:** {study_description}
📊 **FHIR Resources:** {len(fhir_bundle.get('entry', []))} generated"""
# Format analysis data for display
analysis = {
"file_info": {
"filename": os.path.basename(dicom_file.name),
"file_size_bytes": file_size,
"processing_time": result.get('processing_time', 0)
},
"patient_info": {
"name": patient_name
},
"study_info": {
"description": study_description,
"modality": modality
},
"processing_status": "✅ Successfully processed",
"processor_used": "DICOM Processor with pydicom",
"pydicom_available": True
}
# Use the FHIR bundle from processor
fhir_imaging = fhir_bundle
# Record successful job completion
job_manager.update_job_completion(job_id, True, {
"processing_time": f"{processing_time:.2f}s",
"patient_name": patient_name,
"modality": modality
})
# Clear active job tracking
active_jobs["dicom_task"] = None
else:
# Handle processing failure
error_msg = result.get("error", "Unknown error")
fallback_used = result.get("fallback_used", False)
processor_info = "DICOM Fallback Processor" if fallback_used else "DICOM Processor"
status = f"""❌ **DICOM Processing Failed**
📁 **File:** {os.path.basename(dicom_file.name)}
🚫 **Error:** {error_msg}
🔧 **Processor:** {processor_info}
💡 **Note:** pydicom library may not be available or file format issue"""
analysis = {
"error": error_msg,
"file_info": {"filename": os.path.basename(dicom_file.name)},
"processing_status": "❌ Failed",
"processor_used": processor_info,
"fallback_used": fallback_used,
"pydicom_available": not fallback_used
}
fhir_imaging = {}
# Record failed job completion
job_manager.update_job_completion(job_id, False, {"error": error_msg})
# Clear active job tracking
active_jobs["dicom_task"] = None
monitor.log_event("dicom_processing_success", {"filename": dicom_file.name})
return status, analysis, fhir_imaging
except Exception as e:
job_manager.update_job_completion(job_id, False, {"error": str(e)})
active_jobs["dicom_task"] = None
monitor.log_event("dicom_processing_error", {"error": str(e)})
error_analysis = {
"error": str(e),
"file_info": {"filename": os.path.basename(dicom_file.name) if dicom_file else "Unknown"},
"processing_status": "❌ Exception occurred"
}
return f"❌ DICOM processing failed: {str(e)}", error_analysis, {}
def cancel_current_task(task_type):
"""Cancel current processing task"""
global cancellation_flags, running_tasks, task_queues, active_jobs
# DEBUG: log state before cancellation
monitor.log_event("cancel_state_before", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
# Set cancellation flag
cancellation_flags[task_type] = True
# Cancel the actual running task if it exists
if running_tasks[task_type] is not None:
try:
running_tasks[task_type].cancel()
running_tasks[task_type] = None
except Exception as e:
print(f"Error cancelling task {task_type}: {e}")
# Clear the task queue for this task type to prevent new tasks from starting
if task_queues.get(task_type):
task_queues[task_type].clear()
# Reset active job tracking for this task type
active_jobs[task_type] = None
# Reset active tasks counter
if dashboard_state["active_tasks"] > 0:
dashboard_state["active_tasks"] -= 1
monitor.log_event("task_cancelled", {"task_type": task_type})
# DEBUG: log state after cancellation
monitor.log_event("cancel_state_after", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
return f"⏹️ Cancelled {task_type}"
# DEBUG: log state before cancellation
monitor.log_event("cancel_state_before", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
# Set cancellation flag
cancellation_flags[task_type] = True
# Cancel the actual running task if it exists
if running_tasks[task_type] is not None:
try:
running_tasks[task_type].cancel()
running_tasks[task_type] = None
except Exception as e:
print(f"Error cancelling task {task_type}: {e}")
# Reset active tasks counter
if dashboard_state["active_tasks"] > 0:
dashboard_state["active_tasks"] -= 1
monitor.log_event("task_cancelled", {"task_type": task_type})
# DEBUG: log state after cancellation
monitor.log_event("cancel_state_after", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
return f"⏹️ Cancelled {task_type}"
def get_dashboard_status():
"""Get current file processing dashboard status"""
return job_manager.get_dashboard_status()
def get_dashboard_metrics():
"""Get file processing metrics for DataFrame display"""
return job_manager.get_dashboard_metrics()
def get_processing_queue():
"""Get processing queue for DataFrame display"""
return job_manager.get_processing_queue()
def get_jobs_history():
"""Get processing jobs history for DataFrame display"""
return job_manager.get_jobs_history()
# Keep the old function for backward compatibility but redirect to new one
def get_files_history():
"""Legacy function - redirects to get_jobs_history()"""
return get_jobs_history()
def get_old_files_history():
"""Get list of recently processed files for dashboard (legacy function)"""
# Return the last 10 processed files
recent_files = dashboard_state["files_processed"][-10:] if dashboard_state["files_processed"] else []
return recent_files
def add_file_to_dashboard(filename, file_type, success, processing_time=None, error=None, entities_found=None):
"""Add a processed file to the dashboard statistics"""
import datetime
file_info = {
"filename": filename,
"file_type": file_type,
"success": success,
"processing_time": processing_time,
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": error if not success else None,
"entities_found": entities_found or 0
}
dashboard_state["files_processed"].append(file_info)
dashboard_state["total_files"] += 1
if success:
dashboard_state["successful_files"] += 1
else:
dashboard_state["failed_files"] += 1
dashboard_state["last_update"] = file_info["timestamp"]
# Main application
if __name__ == "__main__":
print("🔥 Starting FhirFlame Medical AI Platform...")
# Import frontend UI components dynamically to avoid circular imports
from frontend_ui import create_medical_ui
# Create the UI using the separated frontend components
demo = create_medical_ui(
process_text_only=process_text_only,
process_file_only=process_file_only,
process_dicom_only=process_dicom_only,
cancel_current_task=cancel_current_task,
get_dashboard_status=get_dashboard_status,
dashboard_state=dashboard_state,
get_dashboard_metrics=get_dashboard_metrics,
get_simple_agent_status=get_simple_agent_status,
get_enhanced_codellama=get_enhanced_codellama,
add_file_to_dashboard=add_file_to_dashboard
)
# Launch the application
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
inbrowser=False,
favicon_path="static/favicon.ico"
)