|
---
|
|
title: Proportio โ Precision Proportion Calculator
|
|
emoji: ๐งฎ
|
|
colorFrom: red
|
|
colorTo: gray
|
|
sdk: gradio
|
|
app_file: app.py
|
|
pinned: false
|
|
license: apache-2.0
|
|
tags:
|
|
- mcp-server
|
|
- proportion-calculator
|
|
- gradio
|
|
- python
|
|
- mathematics
|
|
- llm-tools
|
|
---
|
|
|
|
<div align="center">
|
|
<img src="logo_1024.png" alt="Proportio Logo" width="200" height="200">
|
|
</div>
|
|
|
|
[](LICENSE)
|
|
[](https://python.org)
|
|
[](Dockerfile)
|
|
[](tests/)
|
|
[](https://modelcontextprotocol.io)
|
|
|
|
**Professional mathematical calculations for proportions, percentages, and scaling operations with assertion-based validation and MCP server integration.**
|
|
|
|
---
|
|
|
|
## ๐ฏ Overview
|
|
|
|
Proportio is a specialized mathematical calculation server designed for LLM agents and applications requiring precise proportion calculations. Built with **assertion-based validation** and **zero-tolerance error handling**, it provides reliable mathematical operations through both a web interface and Model Context Protocol (MCP) integration.
|
|
|
|
### Key Use Cases
|
|
|
|
- **Recipe Scaling**: Scale ingredient quantities for different serving sizes
|
|
- **Financial Calculations**: Calculate percentages, ratios, and proportional growth
|
|
- **Engineering**: Resize dimensions, scale measurements, and maintain proportional relationships
|
|
- **Data Analysis**: Compute percentages, ratios, and proportional transformations
|
|
- **LLM Integration**: Provide reliable mathematical operations through MCP protocol
|
|
|
|
---
|
|
|
|
|
|
https://github.com/user-attachments/assets/96d30b20-1bf0-4b2b-a1ea-d0a5776f547c
|
|
|
|
---
|
|
## โจ Features
|
|
|
|
### ๐ข Mathematical Functions
|
|
- **Percentage Calculations** - Convert parts to percentages with precision
|
|
- **Proportion Solving** - Solve missing terms in a/b = c/d relationships
|
|
- **Ratio Scaling** - Scale values by precise ratios
|
|
- **Proportionality Constants** - Find k in y = kx relationships
|
|
- **Dimension Resizing** - Uniform scaling of width/height pairs
|
|
|
|
### ๐ก๏ธ Validation Architecture
|
|
- **Assertion-Based Validation** - Explicit mathematical preconditions
|
|
- **Zero Exception Handling** - No try-catch blocks, fast failure detection
|
|
- **Precise Error Messages** - Clear, actionable error descriptions
|
|
- **Type Safety** - Robust input validation and type checking
|
|
|
|
### ๐ Integration Options
|
|
- **Web Interface** - Professional Gradio-based UI with custom branding
|
|
- **MCP Server** - Native Model Context Protocol support for LLM agents
|
|
- **Docker Ready** - Containerized deployment with security best practices
|
|
- **API Access** - Direct function calls with comprehensive documentation
|
|
|
|
### ๐จ Professional Design
|
|
- **Custom Branding** - Red-black-white theme with geometric logo
|
|
- **Responsive Layout** - Optimized for desktop and mobile devices
|
|
- **Split Results** - Clear separation of input/output sections
|
|
- **Error Handling** - User-friendly error messages and validation
|
|
|
|
|
|
---
|
|
|
|
## ๐ Table of Contents
|
|
|
|
- [๐ฏ Overview](#-overview)
|
|
- [โจ Features](#-features)
|
|
- [๐ Quick Start](#-quick-start)
|
|
- [๐ง Core Functions](#-core-functions)
|
|
- [๐๏ธ Architecture](#๏ธ-architecture)
|
|
- [๐ฆ Installation](#-installation)
|
|
- [๐ณ Docker Deployment](#-docker-deployment)
|
|
- [๐งช Testing](#-testing)
|
|
- [๐ MCP Integration](#-mcp-integration)
|
|
- [๐ API Reference](#-api-reference)
|
|
- [๐ ๏ธ Development](#๏ธ-development)
|
|
- [๐ License](#-license)
|
|
|
|
---
|
|
|
|
## ๐ Quick Start
|
|
|
|
### Using Docker (Recommended)
|
|
|
|
```bash
|
|
# Clone the repository
|
|
git clone https://github.com/leksval/proportio.git
|
|
cd proportio
|
|
|
|
# Build and run with Docker
|
|
docker build -t proportio-server .
|
|
docker run -p 7860:7860 proportio-server
|
|
|
|
# Access the web interface
|
|
open http://localhost:7860
|
|
```
|
|
|
|
### Local Development
|
|
|
|
```bash
|
|
# Install dependencies
|
|
pip install -r requirements.txt
|
|
|
|
# Run the server
|
|
python proportion_server.py
|
|
|
|
# Access the web interface
|
|
open http://localhost:7860
|
|
```
|
|
|
|
### Quick Function Examples
|
|
|
|
```python
|
|
from proportion_server import percent_of, solve_proportion, resize_dimensions
|
|
|
|
# Calculate percentage
|
|
result = percent_of(25, 100) # Returns: 25.0
|
|
|
|
# Solve proportion: 3/4 = 6/?
|
|
result = solve_proportion(3, 4, 6, None) # Returns: 8.0
|
|
|
|
# Resize dimensions by 2x
|
|
width, height = resize_dimensions(100, 50, 2.0) # Returns: (200.0, 100.0)
|
|
```
|
|
|
|
---
|
|
|
|
## ๐ง Core Functions
|
|
|
|
### 1. **`percent_of(part, whole)`**
|
|
Calculate what percentage the part is of the whole.
|
|
|
|
```python
|
|
percent_of(25, 100) # โ 25.0%
|
|
percent_of(3, 4) # โ 75.0%
|
|
percent_of(150, 100) # โ 150.0%
|
|
```
|
|
|
|
**Mathematical Preconditions:**
|
|
- `whole != 0` (division by zero protection)
|
|
|
|
**Real-world Examples:**
|
|
- Sales conversion rates
|
|
- Test score percentages
|
|
- Growth rate calculations
|
|
|
|
### 2. **`solve_proportion(a, b, c, d)`**
|
|
Solve missing term in proportion a/b = c/d (exactly one parameter must be None).
|
|
|
|
```python
|
|
solve_proportion(3, 4, 6, None) # โ 8.0 (3/4 = 6/8)
|
|
solve_proportion(None, 4, 6, 8) # โ 3.0 (?/4 = 6/8)
|
|
solve_proportion(2, None, 6, 9) # โ 3.0 (2/? = 6/9)
|
|
```
|
|
|
|
**Mathematical Preconditions:**
|
|
- Exactly one value must be None (missing)
|
|
- Division denominators != 0 (varies by missing value)
|
|
|
|
**Real-world Examples:**
|
|
- Recipe scaling (4 servings : 2 cups = 6 servings : ? cups)
|
|
- Currency exchange rates
|
|
- Map scale calculations
|
|
|
|
### 3. **`scale_by_ratio(value, ratio)`**
|
|
Scale a value by a given ratio.
|
|
|
|
```python
|
|
scale_by_ratio(100, 1.5) # โ 150.0
|
|
scale_by_ratio(200, 0.5) # โ 100.0
|
|
scale_by_ratio(50, 2.0) # โ 100.0
|
|
```
|
|
|
|
**Use Cases:**
|
|
- Applying discount percentages
|
|
- Scaling measurements
|
|
- Financial calculations
|
|
|
|
### 4. **`direct_k(x, y)`**
|
|
Find proportionality constant k in direct variation y = kx.
|
|
|
|
```python
|
|
direct_k(5, 15) # โ 3.0 (15 = 3 ร 5)
|
|
direct_k(4, 12) # โ 3.0 (12 = 3 ร 4)
|
|
direct_k(2, 7) # โ 3.5 (7 = 3.5 ร 2)
|
|
```
|
|
|
|
**Mathematical Preconditions:**
|
|
- `x != 0` (division by zero protection)
|
|
|
|
**Applications:**
|
|
- Physics calculations (force = k ร displacement)
|
|
- Economics (cost = k ร quantity)
|
|
- Engineering (stress = k ร strain)
|
|
|
|
### 5. **`resize_dimensions(width, height, scale)`**
|
|
Resize dimensions with uniform scale factor.
|
|
|
|
```python
|
|
resize_dimensions(100, 50, 2.0) # โ (200.0, 100.0)
|
|
resize_dimensions(200, 100, 0.5) # โ (100.0, 50.0)
|
|
resize_dimensions(150, 75, 1.5) # โ (225.0, 112.5)
|
|
```
|
|
|
|
**Mathematical Preconditions:**
|
|
- `width >= 0` (dimensions must be non-negative)
|
|
- `height >= 0` (dimensions must be non-negative)
|
|
- `scale > 0` (scale factor must be positive)
|
|
|
|
**Applications:**
|
|
- Image resizing
|
|
- Screen resolution scaling
|
|
- Architectural drawings
|
|
|
|
---
|
|
|
|
## ๐๏ธ Architecture
|
|
|
|
### Assertion-Based Validation
|
|
|
|
Proportio uses **assertion-based validation** throughout, providing several key advantages:
|
|
|
|
```python
|
|
def percent_of(part: float, whole: float) -> float:
|
|
# Mathematical preconditions
|
|
assert whole != 0, "Division by zero: whole cannot be zero"
|
|
|
|
# Direct calculation
|
|
percentage = (part / whole) * 100
|
|
return percentage
|
|
```
|
|
|
|
**Benefits:**
|
|
- **Fast Failure**: Immediate error detection with precise messages
|
|
- **No Exception Overhead**: Zero try-catch complexity
|
|
- **Clear Preconditions**: Mathematical requirements explicitly documented
|
|
- **Predictable Behavior**: Consistent error handling across all functions
|
|
|
|
### Project Structure
|
|
|
|
```
|
|
proportio/
|
|
โโโ proportion_server.py # Core mathematical functions + Gradio server
|
|
โโโ models.py # Pydantic data models (simplified)
|
|
โโโ config.py # Configuration and logging setup
|
|
โโโ styles.css # Custom branding and responsive design
|
|
โโโ tests/
|
|
โ โโโ test_tools.py # Comprehensive test suite (58 tests)
|
|
โโโ requirements.txt # Minimal dependencies (3 packages)
|
|
โโโ Dockerfile # Single-stage containerization
|
|
โโโ README.md # This documentation
|
|
```
|
|
|
|
### Dependency Architecture
|
|
|
|
**Streamlined Dependencies** (only 3 required):
|
|
- **`gradio[mcp]>=5.0.0`** - Web framework with MCP server capabilities
|
|
- **`pydantic>=2.8.0`** - Data validation and parsing
|
|
- **`pytest>=8.0.0`** - Testing framework
|
|
|
|
### Error Handling Philosophy
|
|
|
|
**No Try-Catch Blocks** - All validation done through assertions:
|
|
|
|
```python
|
|
# โ Old approach (complex exception handling)
|
|
try:
|
|
if whole == 0:
|
|
raise ValueError("Division by zero")
|
|
result = part / whole
|
|
except ValueError as e:
|
|
# Handle error...
|
|
|
|
# โ
New approach (assertion-based)
|
|
assert whole != 0, "Division by zero: whole cannot be zero"
|
|
result = part / whole
|
|
```
|
|
|
|
---
|
|
|
|
## ๐ฆ Installation
|
|
|
|
### System Requirements
|
|
|
|
- **Python 3.11+**
|
|
- **pip** package manager
|
|
- **Docker** (optional, for containerized deployment)
|
|
|
|
### Local Installation
|
|
|
|
```bash
|
|
# Clone repository
|
|
git clone https://github.com/leksval/proportio.git
|
|
cd proportio
|
|
|
|
# Create virtual environment (recommended)
|
|
python -m venv venv
|
|
source venv/bin/activate # On Windows: venv\Scripts\activate
|
|
|
|
# Install dependencies
|
|
pip install -r requirements.txt
|
|
|
|
# Verify installation
|
|
python -c "from proportion_server import percent_of; print(percent_of(25, 100))"
|
|
```
|
|
|
|
### Development Installation
|
|
|
|
```bash
|
|
# Install with development dependencies
|
|
pip install -r requirements.txt
|
|
|
|
# Run tests to verify setup
|
|
python -m pytest tests/test_tools.py -v
|
|
|
|
# Start development server
|
|
python proportion_server.py
|
|
```
|
|
|
|
---
|
|
|
|
## ๐ณ Docker Deployment
|
|
|
|
### Building the Container
|
|
|
|
```bash
|
|
# Build image
|
|
docker build -t proportio-server .
|
|
|
|
# Run container
|
|
docker run -p 7860:7860 proportio-server
|
|
|
|
# Run with custom configuration
|
|
docker run -p 8080:7860 -e PORT=7860 proportio-server
|
|
```
|
|
|
|
### Container Features
|
|
|
|
- **Security**: Non-root user execution
|
|
- **Optimization**: Single-stage build for minimal image size
|
|
- **Flexibility**: Configurable port and environment settings
|
|
- **Health**: Automatic process management
|
|
|
|
### Production Deployment
|
|
|
|
```bash
|
|
# Run detached with restart policy
|
|
docker run -d \
|
|
--name proportio \
|
|
--restart unless-stopped \
|
|
-p 7860:7860 \
|
|
proportio-server
|
|
|
|
# View logs
|
|
docker logs proportio
|
|
|
|
# Stop container
|
|
docker stop proportio
|
|
```
|
|
|
|
---
|
|
|
|
## ๐งช Testing
|
|
|
|
### Test Suite Coverage
|
|
|
|
**58 comprehensive tests** covering:
|
|
- โ
Basic functionality for all 5 core functions
|
|
- โ
Edge cases and boundary conditions
|
|
- โ
Error handling and assertion validation
|
|
- โ
Integration workflows and chained calculations
|
|
- โ
Floating-point precision and mathematical accuracy
|
|
- โ
Type validation and input sanitization
|
|
|
|
### Running Tests
|
|
|
|
```bash
|
|
# Run all tests
|
|
python -m pytest tests/test_tools.py -v
|
|
|
|
# Run specific test class
|
|
python -m pytest tests/test_tools.py::TestPercentOf -v
|
|
|
|
# Run with coverage (if pytest-cov installed)
|
|
python -m pytest tests/test_tools.py --cov=proportion_server
|
|
|
|
# Run tests in Docker
|
|
docker run --rm proportio-server python -m pytest tests/test_tools.py -v
|
|
```
|
|
|
|
### Test Categories
|
|
|
|
#### **Unit Tests**
|
|
- Individual function validation
|
|
- Mathematical accuracy verification
|
|
- Error condition testing
|
|
|
|
#### **Integration Tests**
|
|
- Chained calculation workflows
|
|
- Real-world scenario testing
|
|
- Cross-function compatibility
|
|
|
|
#### **Edge Case Tests**
|
|
- Floating-point precision limits
|
|
- Very large and very small numbers
|
|
- Boundary condition validation
|
|
|
|
### Sample Test Output
|
|
|
|
```
|
|
==================== test session starts ====================
|
|
collected 58 items
|
|
|
|
tests/test_tools.py::TestPercentOf::test_basic_percentage PASSED
|
|
tests/test_tools.py::TestPercentOf::test_zero_part PASSED
|
|
tests/test_tools.py::TestPercentOf::test_negative_values PASSED
|
|
...
|
|
tests/test_tools.py::TestIntegration::test_real_world_recipe_scaling PASSED
|
|
tests/test_tools.py::TestIntegration::test_financial_calculation_workflow PASSED
|
|
|
|
==================== 58 passed in 0.45s ====================
|
|
```
|
|
|
|
---
|
|
|
|
## ๐ MCP Integration
|
|
|
|
### Model Context Protocol Support
|
|
|
|
Proportio provides native **MCP server capabilities** for seamless LLM integration:
|
|
|
|
```python
|
|
# Launch with MCP support
|
|
demo.launch(
|
|
server_name="0.0.0.0",
|
|
server_port=7860,
|
|
mcp_server=True, # Enable MCP functionality
|
|
show_error=True
|
|
)
|
|
```
|
|
|
|
### Using with LLM Agents
|
|
|
|
The MCP server exposes all mathematical functions as tools that LLMs can call directly:
|
|
|
|
**Available MCP Tools:**
|
|
- `percent_of` - Calculate percentage relationships
|
|
- `solve_proportion` - Solve missing proportion terms
|
|
- `scale_by_ratio` - Apply scaling ratios
|
|
- `direct_k` - Find proportionality constants
|
|
- `resize_dimensions` - Scale dimensional pairs
|
|
|
|
### MCP Connection Example
|
|
|
|
```json
|
|
{
|
|
"name": "proportio",
|
|
"type": "sse",
|
|
"url": "http://localhost:7860/mcp"
|
|
}
|
|
```
|
|
|
|
### Integration Benefits
|
|
|
|
- **Reliable Math**: LLMs can delegate complex calculations
|
|
- **Error Handling**: Clear error messages for invalid inputs
|
|
- **Type Safety**: Automatic input validation and conversion
|
|
- **Performance**: Fast, direct mathematical operations
|
|
|
|
---
|
|
|
|
## ๐ API Reference
|
|
|
|
### Function Signatures
|
|
|
|
```python
|
|
def percent_of(part: float, whole: float) -> float:
|
|
"""Calculate percentage that part is of whole."""
|
|
|
|
def solve_proportion(
|
|
a: Optional[float] = None,
|
|
b: Optional[float] = None,
|
|
c: Optional[float] = None,
|
|
d: Optional[float] = None
|
|
) -> float:
|
|
"""Solve missing term in proportion a/b = c/d."""
|
|
|
|
def scale_by_ratio(value: float, ratio: float) -> float:
|
|
"""Scale value by given ratio."""
|
|
|
|
def direct_k(x: float, y: float) -> float:
|
|
"""Find proportionality constant k where y = kx."""
|
|
|
|
def resize_dimensions(width: float, height: float, scale: float) -> Tuple[float, float]:
|
|
"""Resize dimensions with uniform scale factor."""
|
|
```
|
|
|
|
### Error Messages
|
|
|
|
All functions provide clear, actionable error messages:
|
|
|
|
```python
|
|
# Division by zero errors
|
|
"Division by zero: whole cannot be zero"
|
|
"Division by zero: x cannot be zero"
|
|
"Division by zero: denominator"
|
|
|
|
# Validation errors
|
|
"Exactly one value must be None"
|
|
"Width must be non-negative"
|
|
"Height must be non-negative"
|
|
"Scale factor must be positive"
|
|
```
|
|
|
|
### Return Types
|
|
|
|
- **Single Values**: `float` for mathematical results
|
|
- **Dimension Pairs**: `Tuple[float, float]` for width/height
|
|
- **Errors**: `AssertionError` with descriptive messages
|
|
|
|
---
|
|
|
|
## ๐ ๏ธ Development
|
|
|
|
### Project Philosophy
|
|
|
|
1. **Assertion-Based Validation** - No try-catch complexity
|
|
2. **Mathematical Precision** - Accurate calculations with clear preconditions
|
|
3. **Minimal Dependencies** - Only essential packages
|
|
4. **Comprehensive Testing** - High test coverage with edge cases
|
|
5. **Professional Design** - Clean, branded user interface
|
|
|
|
### Code Style
|
|
|
|
```python
|
|
# Clear function signatures with type hints
|
|
def function_name(param: Type) -> ReturnType:
|
|
"""
|
|
Brief description.
|
|
|
|
Args:
|
|
param: Parameter description
|
|
|
|
Returns:
|
|
Return value description
|
|
|
|
Mathematical preconditions:
|
|
- Explicit constraint documentation
|
|
"""
|
|
# Assertion-based validation
|
|
assert condition, "Clear error message"
|
|
|
|
# Direct calculation
|
|
result = calculation
|
|
|
|
# Optional logging
|
|
logger.debug(f"Operation completed: {result}")
|
|
|
|
return result
|
|
```
|
|
|
|
### Adding New Functions
|
|
|
|
1. **Implement Core Logic** - Add function to `proportion_server.py`
|
|
2. **Add Mathematical Preconditions** - Document constraints explicitly
|
|
3. **Create Demo Function** - Add Gradio interface wrapper
|
|
4. **Write Comprehensive Tests** - Cover all edge cases
|
|
5. **Update Documentation** - Add examples and use cases
|
|
|
|
### Contributing Guidelines
|
|
|
|
1. **Fork the Repository** - Create your feature branch
|
|
2. **Follow Code Style** - Use assertion-based validation
|
|
3. **Add Tests** - Ensure comprehensive test coverage
|
|
4. **Update Documentation** - Keep README current
|
|
5. **Submit Pull Request** - Include description of changes
|
|
|
|
---
|
|
|
|
## ๐ License
|
|
|
|
This project is licensed under the **Apache License 2.0** - see the [LICENSE](LICENSE) file for details.
|
|
|
|
### Key License Points
|
|
|
|
- โ
**Commercial Use** - Use in commercial applications
|
|
- โ
**Modification** - Modify and distribute changes
|
|
- โ
**Distribution** - Distribute original or modified versions
|
|
- โ
**Patent Use** - Grant of patent rights from contributors
|
|
- โ ๏ธ **Attribution** - Must include license and copyright notice
|
|
- โ ๏ธ **State Changes** - Must document modifications
|
|
|
|
---
|
|
|
|
## ๐ค Support
|
|
|
|
### Getting Help
|
|
|
|
- **Issues**: [GitHub Issues](https://github.com/leksval/proportio/issues)
|
|
- **Documentation**: This README and inline code documentation
|
|
- **Examples**: See `tests/test_tools.py` for usage examples
|
|
|
|
### Contributing
|
|
|
|
We welcome contributions! Please see the [Development](#๏ธ-development) section for guidelines.
|
|
|
|
### Reporting Bugs
|
|
|
|
When reporting bugs, please include:
|
|
1. **Environment Details** (Python version, OS, Docker version)
|
|
2. **Reproduction Steps** (minimal code example)
|
|
3. **Expected vs Actual Behavior**
|
|
4. **Error Messages** (full stack trace if applicable)
|
|
|
|
---
|
|
|
|
**Built with โค๏ธ for mathematical precision and LLM integration**
|
|
|
|
*Proportio - Where Mathematics Meets Reliability*
|
|
|