gregorkrzmanc's picture
.
e75a247
raw
history blame
20.6 kB
import numpy as np
import torch
from torch_scatter import scatter_add, scatter_sum
from sklearn.preprocessing import StandardScaler
from torch_scatter import scatter_sum
def get_ratios(e_hits, part_idx, y):
"""Obtain the percentage of energy of the particle present in the hits
Args:
e_hits (_type_): _description_
part_idx (_type_): _description_
y (_type_): _description_
Returns:
_type_: _description_
"""
energy_from_showers = scatter_sum(e_hits, part_idx.long(), dim=0)
# y_energy = y[:, 3]
y_energy = y.E
energy_from_showers = energy_from_showers[1:]
assert len(energy_from_showers) > 0
return (energy_from_showers.flatten() / y_energy).tolist()
def get_number_hits(e_hits, part_idx):
number_of_hits = scatter_sum(torch.ones_like(e_hits), part_idx.long(), dim=0)
return (number_of_hits[1:].flatten()).tolist()
def get_number_of_daughters(hit_type_feature, hit_particle_link, daughters):
a = hit_particle_link
b = daughters
a_u = torch.unique(a)
number_of_p = torch.zeros_like(a_u)
for p, i in enumerate(a_u):
mask2 = a == i
number_of_p[p] = torch.sum(torch.unique(b[mask2]) != -1)
return number_of_p
def find_mask_no_energy(
hit_particle_link,
hit_type_a,
hit_energies,
y,
daughters,
predict=False,
is_Ks=False,
):
"""This function remove particles with tracks only and remove particles with low fractions
# Remove 2212 going to multiple particles without tracks for now
# remove particles below energy cut
# remove particles that decayed in the tracker
# remove particles with two tracks (due to bad tracking)
# remove particles with daughters for the moment
Args:
hit_particle_link (_type_): _description_
hit_type_a (_type_): _description_
hit_energies (_type_): _description_
y (_type_): _description_
Returns:
_type_: _description_
"""
number_of_daughters = get_number_of_daughters(
hit_type_a, hit_particle_link, daughters
)
list_p = np.unique(hit_particle_link)
list_remove = []
part_frac = torch.tensor(get_ratios(hit_energies, hit_particle_link, y))
number_of_hits = get_number_hits(hit_energies, hit_particle_link)
if predict:
energy_cut = 0.1
filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist()
else:
energy_cut = 0.01
filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist()
number_of_tracks = scatter_add(1 * (hit_type_a == 1), hit_particle_link.long())[1:]
if is_Ks == False:
for index, p in enumerate(list_p):
mask = hit_particle_link == p
hit_types = np.unique(hit_type_a[mask])
if predict:
if (
np.array_equal(hit_types, [0, 1])
or int(p) not in filt1
or (number_of_hits[index] < 2)
or (y.decayed_in_tracker[index] == 1)
or number_of_tracks[index] == 2
or number_of_daughters[index] > 1
):
list_remove.append(p)
else:
if (
np.array_equal(hit_types, [0, 1])
or int(p) not in filt1
or (number_of_hits[index] < 2)
or number_of_tracks[index] == 2
or number_of_daughters[index] > 1
):
list_remove.append(p)
if len(list_remove) > 0:
mask = torch.tensor(np.full((len(hit_particle_link)), False, dtype=bool))
for p in list_remove:
mask1 = hit_particle_link == p
mask = mask1 + mask
else:
mask = np.full((len(hit_particle_link)), False, dtype=bool)
if len(list_remove) > 0:
mask_particles = np.full((len(list_p)), False, dtype=bool)
for p in list_remove:
mask_particles1 = list_p == p
mask_particles = mask_particles1 + mask_particles
else:
mask_particles = np.full((len(list_p)), False, dtype=bool)
return mask, mask_particles
class CachedIndexList:
def __init__(self, lst):
self.lst = lst
self.cache = {}
def index(self, value):
if value in self.cache:
return self.cache[value]
else:
idx = self.lst.index(value)
self.cache[value] = idx
return idx
def find_cluster_id(hit_particle_link):
unique_list_particles = list(np.unique(hit_particle_link))
if np.sum(np.array(unique_list_particles) == -1) > 0:
unique_list_particles = torch.tensor(unique_list_particles)
non_noise_idx = torch.where(torch.tensor(unique_list_particles) != -1)[0]
noise_idx = torch.where(torch.tensor(unique_list_particles) == -1)[0]
non_noise_particles = torch.tensor(unique_list_particles)[non_noise_idx]
c_non_noise_particles = CachedIndexList(non_noise_particles.tolist())
cluster_id = map(
lambda x: c_non_noise_particles.index(x), hit_particle_link.tolist()
)
cluster_id = torch.Tensor(list(cluster_id)) + 1
unique_list_particles[non_noise_idx] = cluster_id
unique_list_particles[noise_idx] = 0
else:
c_unique_list_particles = CachedIndexList(unique_list_particles)
cluster_id = map(
lambda x: c_unique_list_particles.index(x), hit_particle_link.tolist()
)
cluster_id = torch.Tensor(list(cluster_id)) + 1
# unique_list_particles1 = torch.unique(hit_particle_link)
# cluster_id = torch.searchsorted(
# unique_list_particles1, hit_particle_link, right=False
# )
# cluster_id = cluster_id + 1
return cluster_id, unique_list_particles
def scatter_count(input: torch.Tensor):
return scatter_add(torch.ones_like(input, dtype=torch.long), input.long())
def get_particle_features(unique_list_particles, output, prediction, connection_list):
unique_list_particles = torch.Tensor(unique_list_particles).to(torch.int64)
if prediction:
number_particle_features = 12 - 2
else:
number_particle_features = 9 - 2
if output["pf_features"].shape[0] == 18:
number_particle_features += 8 # add vertex information
features_particles = torch.permute(
torch.tensor(
output["pf_features"][
2:number_particle_features, list(unique_list_particles)
]
),
(1, 0),
) #
# particle_coord are just features 10, 11, 12
if features_particles.shape[1] == 16: # Using config with part_pxyz and part_vertex_xyz
#print("Using config with part_pxyz and part_vertex_xyz")
particle_coord = features_particles[:, 10:13]
vertex_coord = features_particles[:, 13:16]
# normalize particle coords
particle_coord = particle_coord# / np.linalg.norm(particle_coord, axis=1).reshape(-1, 1) # DO NOT NORMALIZE
#particle_coord, spherical_to_cartesian(
# features_particles[:, 1],
# features_particles[:, 0], # theta and phi are mixed!!!
# features_particles[:, 2],
# normalized=True,
#)
else:
particle_coord = spherical_to_cartesian(
features_particles[:, 1],
features_particles[:, 0], # theta and phi are mixed!!!
features_particles[:, 2],
normalized=True,
)
vertex_coord = torch.zeros_like(particle_coord)
y_mass = features_particles[:, 3].view(-1).unsqueeze(1)
y_mom = features_particles[:, 2].view(-1).unsqueeze(1)
y_energy = torch.sqrt(y_mass**2 + y_mom**2)
y_pid = features_particles[:, 4].view(-1).unsqueeze(1)
if prediction:
y_data_graph = Particles_GT(
particle_coord,
y_energy,
y_mom,
y_mass,
y_pid,
features_particles[:, 5].view(-1).unsqueeze(1),
features_particles[:, 6].view(-1).unsqueeze(1),
unique_list_particles=unique_list_particles,
vertex=vertex_coord,
)
else:
y_data_graph = Particles_GT(
particle_coord,
y_energy,
y_mom,
y_mass,
y_pid,
unique_list_particles=unique_list_particles,
vertex=vertex_coord,
)
return y_data_graph
def modify_index_link_for_gamma_e(
hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks=False
):
"""Split all particles that have daughters, mostly for brems and conversions but also for protons and neutrons
Returns:
hit_particle_link: new link
hit_link_modified: bool for modified hits
"""
hit_link_modified = torch.zeros_like(hit_particle_link).to(hit_particle_link.device)
mask = hit_type_feature > 1
a = hit_particle_link[mask]
b = daughters[mask]
a_u = torch.unique(a)
number_of_p = torch.zeros_like(a_u)
connections_list = []
for p, i in enumerate(a_u):
mask2 = a == i
list_of_daugthers = torch.unique(b[mask2])
number_of_p[p] = len(list_of_daugthers)
if (number_of_p[p] > 1) and (torch.sum(list_of_daugthers == i) > 0):
connections_list.append([i, torch.unique(b[mask2])])
pid_particles = torch.tensor(output["pf_features"][6, 0:number_part])
electron_photon_mask = (torch.abs(pid_particles[a_u.long()]) == 11) + (
pid_particles[a_u.long()] == 22
)
electron_photon_mask = (
electron_photon_mask * number_of_p > 1
) # electron_photon_mask *
if is_Ks:
index_change = a_u # [electron_photon_mask]
else:
index_change = a_u[electron_photon_mask]
for i in index_change:
mask_n = mask * (hit_particle_link == i)
hit_particle_link[mask_n] = daughters[mask_n]
hit_link_modified[mask_n] = 1
return hit_particle_link, hit_link_modified, connections_list
def get_hit_features(
output, number_hits, prediction, number_part, hit_chis, pos_pxpy, is_Ks=False
):
hit_particle_link = torch.tensor(output["pf_vectoronly"][0, 0:number_hits])
if prediction:
indx_daugthers = 3
else:
indx_daugthers = 3
daughters = torch.tensor(output["pf_vectoronly"][indx_daugthers, 0:number_hits])
if prediction:
pandora_cluster = torch.tensor(output["pf_vectoronly"][1, 0:number_hits])
pandora_pfo_link = torch.tensor(output["pf_vectoronly"][2, 0:number_hits])
if is_Ks:
pandora_mom = torch.permute(
torch.tensor(output["pf_points_pfo"][0:3, 0:number_hits]), (1, 0)
)
pandora_ref_point = torch.permute(
torch.tensor(output["pf_points_pfo"][3:, 0:number_hits]), (1, 0)
)
else:
pandora_mom = None
pandora_ref_point = None
if is_Ks:
pandora_cluster_energy = torch.tensor(
output["pf_features"][9, 0:number_hits]
)
pfo_energy = torch.tensor(output["pf_features"][10, 0:number_hits])
chi_squared_tracks = torch.tensor(output["pf_features"][11, 0:number_hits])
elif hit_chis:
pandora_cluster_energy = torch.tensor(
output["pf_features"][-3, 0:number_hits]
)
pfo_energy = torch.tensor(output["pf_features"][-2, 0:number_hits])
chi_squared_tracks = torch.tensor(output["pf_features"][-1, 0:number_hits])
else:
pandora_cluster_energy = torch.tensor(
output["pf_features"][-2, 0:number_hits]
)
pfo_energy = torch.tensor(output["pf_features"][-1, 0:number_hits])
chi_squared_tracks = None
else:
pandora_cluster = None
pandora_pfo_link = None
pandora_cluster_energy = None
pfo_energy = None
chi_squared_tracks = None
pandora_mom = None
pandora_ref_point = None
# hit type
hit_type_feature = torch.permute(
torch.tensor(output["pf_vectors"][:, 0:number_hits]), (1, 0)
)[:, 0].to(torch.int64)
hit_link_modified = torch.zeros_like(hit_particle_link)
connection_list = []
(
hit_particle_link,
hit_link_modified,
connection_list,
) = modify_index_link_for_gamma_e(
hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks
)
cluster_id, unique_list_particles = find_cluster_id(hit_particle_link)
# position, e, p
pos_xyz_hits = torch.permute(
torch.tensor(output["pf_points"][0:3, 0:number_hits]), (1, 0)
)
pf_features_hits = torch.permute(
torch.tensor(output["pf_features"][0:2, 0:number_hits]), (1, 0)
) # removed theta, phi
p_hits = pf_features_hits[:, 0].unsqueeze(1)
p_hits[p_hits == -1] = 0 # correct p of Hcal hits to be 0
e_hits = pf_features_hits[:, 1].unsqueeze(1)
e_hits[e_hits == -1] = 0 # correct the energy of the tracks to be 0
if pos_pxpy:
pos_pxpypz = torch.permute(
torch.tensor(output["pf_points"][3:, 0:number_hits]), (1, 0)
)
else:
pos_pxpypz = pos_xyz_hits
# pos_pxpypz = pos_theta_phi
return (
pos_xyz_hits,
pos_pxpypz,
p_hits,
e_hits,
hit_particle_link,
pandora_cluster,
pandora_cluster_energy,
pfo_energy,
pandora_mom,
pandora_ref_point,
unique_list_particles,
cluster_id,
hit_type_feature,
pandora_pfo_link,
daughters,
hit_link_modified,
connection_list,
chi_squared_tracks,
)
# def theta_phi_to_pxpypz(pos_theta_phi, pt):
# px = (pt.view(-1) * torch.cos(pos_theta_phi[:, 0])).view(-1, 1)
# py = (pt.view(-1) * torch.sin(pos_theta_phi[:, 0])).view(-1, 1)
# pz = (pt.view(-1) * torch.cos(pos_theta_phi[:, 1])).view(-1, 1)
# pxpypz = torch.cat(
# (pos_theta_phi[:, 0].view(-1, 1), pos_theta_phi[:, 1].view(-1, 1), pz), dim=1
# )
# return pxpypz
def standardize_coordinates(coord_cart_hits):
if len(coord_cart_hits) == 0:
return coord_cart_hits, None
std_scaler = StandardScaler()
coord_cart_hits = std_scaler.fit_transform(coord_cart_hits)
return torch.tensor(coord_cart_hits).float(), std_scaler
def create_dif_interactions(i, j, pos, number_p):
x_interactions = pos
x_interactions = torch.reshape(x_interactions, [number_p, 1, 2])
x_interactions = x_interactions.repeat(1, number_p, 1)
xi = x_interactions[i, j, :]
xj = x_interactions[j, i, :]
x_interactions_m = xi - xj
return x_interactions_m
def spherical_to_cartesian(phi, theta, r, normalized=False):
if normalized:
r = torch.ones_like(phi)
x = r * torch.sin(theta) * torch.cos(phi)
y = r * torch.sin(theta) * torch.sin(phi)
z = r * torch.cos(theta)
return torch.cat((x.unsqueeze(1), y.unsqueeze(1), z.unsqueeze(1)), dim=1)
def calculate_distance_to_boundary(g):
r = 2150
r_in_endcap = 2307
mask_endcap = (torch.abs(g.ndata["pos_hits_xyz"][:, 2]) - r_in_endcap) > 0
mask_barrer = ~mask_endcap
weight = torch.ones_like(g.ndata["pos_hits_xyz"][:, 0])
C = g.ndata["pos_hits_xyz"]
A = torch.Tensor([0, 0, 1]).to(C.device)
P = (
r
* 1
/ (torch.norm(torch.cross(A.view(1, -1), C, dim=-1), dim=1)).unsqueeze(1)
* C
)
P1 = torch.abs(r_in_endcap / g.ndata["pos_hits_xyz"][:, 2].unsqueeze(1)) * C
weight[mask_barrer] = torch.norm(P - C, dim=1)[mask_barrer]
weight[mask_endcap] = torch.norm(P1[mask_endcap] - C[mask_endcap], dim=1)
g.ndata["radial_distance"] = weight
weight_ = torch.exp(-(weight / 1000))
g.ndata["radial_distance_exp"] = weight_
return g
class Particles_GT:
def __init__(
self,
coordinates,
energy,
momentum,
mass,
pid,
decayed_in_calo=None,
decayed_in_tracker=None,
batch_number=None,
unique_list_particles=None,
energy_corrected=None,
vertex=None,
):
self.coord = coordinates
self.E = energy
self.E_corrected = energy
if energy_corrected is not None:
self.E_corrected = energy_corrected
if len(coordinates) != len(energy):
print("!!!!!!!!!!!!!!!!!!!")
raise Exception
self.m = momentum
self.mass = mass
self.pid = pid
self.vertex = vertex
if unique_list_particles is not None:
self.unique_list_particles = unique_list_particles
if decayed_in_calo is not None:
self.decayed_in_calo = decayed_in_calo
if decayed_in_tracker is not None:
self.decayed_in_tracker = decayed_in_tracker
if batch_number is not None:
self.batch_number = batch_number
def __len__(self):
return len(self.E)
def mask(self, mask):
for k in self.__dict__:
if getattr(self, k) is not None:
if type(getattr(self, k)) == list:
if getattr(self, k)[0] is not None:
setattr(self, k, getattr(self, k)[mask])
else:
setattr(self, k, getattr(self, k)[mask])
def copy(self):
obj = type(self).__new__(self.__class__)
obj.__dict__.update(self.__dict__)
return obj
def calculate_corrected_E(self, g, connections_list):
for element in connections_list:
# checked there is track
parent_particle = element[0]
mask_i = g.ndata["particle_number_nomap"] == parent_particle
track_number = torch.sum(g.ndata["hit_type"][mask_i] == 1)
if track_number > 0:
# find index in list
index_parent = torch.argmax(
1 * (self.unique_list_particles == parent_particle)
)
energy_daugthers = 0
for daugther in element[1]:
if daugther != parent_particle:
if torch.sum(self.unique_list_particles == daugther) > 0:
index_daugthers = torch.argmax(
1 * (self.unique_list_particles == daugther)
)
energy_daugthers = (
self.E[index_daugthers] + energy_daugthers
)
self.E_corrected[index_parent] = (
self.E_corrected[index_parent] - energy_daugthers
)
self.coord[index_parent] *= (1 - energy_daugthers / torch.norm(self.coord[index_parent]))
def concatenate_Particles_GT(list_of_Particles_GT):
list_coord = [p[1].coord for p in list_of_Particles_GT]
list_vertex = [p[1].vertex for p in list_of_Particles_GT]
list_coord = torch.cat(list_coord, dim=0)
list_E = [p[1].E for p in list_of_Particles_GT]
list_E = torch.cat(list_E, dim=0)
list_E_corr = [p[1].E_corrected for p in list_of_Particles_GT]
list_E_corr = torch.cat(list_E_corr, dim=0)
list_m = [p[1].m for p in list_of_Particles_GT]
list_m = torch.cat(list_m, dim=0)
list_mass = [p[1].mass for p in list_of_Particles_GT]
list_mass = torch.cat(list_mass, dim=0)
list_pid = [p[1].pid for p in list_of_Particles_GT]
list_pid = torch.cat(list_pid, dim=0)
if list_vertex[0] is not None:
list_vertex = torch.cat(list_vertex, dim=0)
if hasattr(list_of_Particles_GT[0], "decayed_in_calo"):
list_dec_calo = [p[1].decayed_in_calo for p in list_of_Particles_GT]
list_dec_track = [p[1].decayed_in_tracker for p in list_of_Particles_GT]
list_dec_calo = torch.cat(list_dec_calo, dim=0)
list_dec_track = torch.cat(list_dec_track, dim=0)
else:
list_dec_calo = None
list_dec_track = None
batch_number = add_batch_number(list_of_Particles_GT)
return Particles_GT(
list_coord,
list_E,
list_m,
list_mass,
list_pid,
list_dec_calo,
list_dec_track,
batch_number,
energy_corrected=list_E_corr,
vertex=list_vertex,
)
def add_batch_number(list_graphs):
list_y = []
for i, el in enumerate(list_graphs):
y = el[1]
batch_id = torch.ones(y.E.shape[0], 1) * i
list_y.append(batch_id)
list_y = torch.cat(list_y, dim=0)
return list_y