File size: 4,768 Bytes
b527097
809f87e
3568413
b527097
 
3568413
 
809f87e
 
283e426
3568413
 
809f87e
283e426
 
809f87e
 
 
 
 
283e426
3568413
 
809f87e
283e426
 
809f87e
 
 
 
 
283e426
3568413
 
283e426
 
 
 
 
 
 
 
 
3568413
 
283e426
 
 
 
 
 
 
 
 
 
 
3568413
 
283e426
 
 
 
 
 
809f87e
283e426
 
3568413
 
809f87e
283e426
 
809f87e
283e426
3568413
 
 
 
 
 
 
 
 
 
 
 
 
b527097
 
 
3568413
b527097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3568413
 
b527097
3568413
b527097
 
3568413
b527097
 
 
 
 
 
 
 
3568413
 
 
 
b527097
3568413
b527097
3568413
 
 
 
b527097
3568413
b527097
 
 
 
3568413
b527097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3568413
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import requests
from langchain_core.tools import tool
from huggingface_hub import InferenceClient
from openai import OpenAI


# --- Basic operations --- #

@tool
def multiply(a: float, b: float) -> float:
    """Multiplies two numbers.

    Args:
        a (float): the first number
        b (float): the second number
    """
    return a * b


@tool
def add(a: float, b: float) -> float:
    """Adds two numbers.

    Args:
        a (float): the first number
        b (float): the second number
    """
    return a + b


@tool
def subtract(a: float, b: float) -> int:
    """Subtracts two numbers.

    Args:
        a (float): the first number
        b (float): the second number
    """
    return a - b


@tool
def divide(a: float, b: float) -> float:
    """Divides two numbers.

    Args:
        a (float): the first float number
        b (float): the second float number
    """
    if b == 0:
        raise ValueError("Cannot divided by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.

    Args:
        a (int): the first number
        b (int): the second number
    """
    return a % b


@tool
def power(a: float, b: float) -> float:
    """Get the power of two numbers.

    Args:
        a (float): the first number
        b (float): the second number
    """
    return a**b


# --- Functions --- #

@tool
def query_image(query: str, image_url: str) -> str:
    """Ask anything about an image using a Vision Language Model

    Args:
        query (str): the query about the image, e.g. how many persons are on the image?
        image_url (str): the URL to the image
    """

    # PROVIDER = 'huggingface'
    PROVIDER = 'openai'

    try:
        if PROVIDER == 'huggingface':
            client = InferenceClient(provider="nebius")
            completion = client.chat.completions.create(
                # model="google/gemma-3-27b-it",
                model="Qwen/Qwen2.5-VL-72B-Instruct",
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": query
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_url
                                }
                            }
                        ]
                    }
                ],
                max_tokens=512,
            )
            return completion.choices[0].message

        elif PROVIDER == 'openai':
            client = OpenAI()

            response = client.responses.create(
                model="gpt-4.1-mini",
                input=[{
                    "role": "user",
                    "content": [
                        {"type": "input_text", "text": query},
                        {
                            "type": "input_image",
                            "image_url": image_url,
                        },
                    ],
                }],
            )

            return response.output_text

        else:
            raise AttributeError(f'PROVIDER must be "openai" or "huggingface", received "{PROVIDER}"')

    except Exception as e:
        return f"query_image failed: {e}"


@tool
def automatic_speech_recognition(file_url: str, file_extension: str) -> str:
    """Transcribe an audio file to text

    Args:
        file_url (str): the URL to the audio file
        file_extension (str): the file extension, e.g. mp3
    """

    # PROVIDER = 'huggingface'
    PROVIDER = 'openai'

    try:
        if PROVIDER == 'huggingface':
            client = InferenceClient(provider="fal-ai")
            return client.automatic_speech_recognition(file_url, model="openai/whisper-large-v3")

        elif PROVIDER == 'openai':
            # download the audio file
            response = requests.get(file_url)
            response.raise_for_status()
            # write to disk
            file_extension = file_extension.replace('.','')
            with open(f'tmp.{file_extension}', 'wb') as file:
                file.write(response.content)

            audio_file = open(f'tmp.{file_extension}', "rb")
            client = OpenAI()
            transcription = client.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file
            )
            return transcription.text

        else:
            raise AttributeError(f'PROVIDER must be "openai" or "huggingface", received "{PROVIDER}"')

    except Exception as e:
        return f"automatic_speech_recognition failed: {e}"