filter / app.py
habulaj's picture
Update app.py
59d7833 verified
from fastapi import FastAPI, Query, HTTPException
import torch
import re
import time
import logging
import os
from transformers import AutoTokenizer, GenerationConfig
from peft import AutoPeftModelForCausalLM
import gc
# -------- CONFIGURAÇÕES DE OTIMIZAÇÃO --------
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OMP_NUM_THREADS"] = "2"
os.environ["MKL_NUM_THREADS"] = "2"
torch.set_num_threads(2)
torch.set_num_interop_threads(1)
# -------- LOGGING CONFIG --------
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
log = logging.getLogger("news-filter")
# -------- LOAD MODEL --------
model_name = "habulaj/filterinstruct180"
log.info("🚀 Carregando modelo e tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
padding_side="left"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoPeftModelForCausalLM.from_pretrained(
model_name,
device_map="cpu",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_cache=True,
trust_remote_code=True
)
model.eval()
log.info("✅ Modelo carregado (eval mode).")
generation_config = GenerationConfig(
max_new_tokens=128,
temperature=1.0,
do_sample=False,
num_beams=1,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=2,
repetition_penalty=1.1,
length_penalty=1.0
)
# -------- FASTAPI INIT --------
app = FastAPI(title="News Filter JSON API")
@app.get("/")
def read_root():
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
# -------- INFERÊNCIA --------
def infer_filter(title, content):
log.info(f"🧠 Inferência iniciada para: {title}")
start_time = time.time()
chat_prompt = build_chat_prompt(title, content)
inputs = tokenizer(
chat_prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding=False,
add_special_tokens=False
)
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
with torch.no_grad(), torch.inference_mode():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
num_return_sequences=1,
output_scores=False,
return_dict_in_generate=False
)
generated_tokens = outputs[0][len(input_ids[0]):]
generated = tokenizer.decode(
generated_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
log.info("📤 Resultado gerado:")
log.info(generated)
json_result = extract_json(generated)
duration = time.time() - start_time
log.info(f"✅ JSON extraído em {duration:.2f}s")
# Limpeza de memória
del outputs, generated_tokens, inputs
gc.collect()
if json_result:
return json_result
else:
raise HTTPException(status_code=404, detail="Unable to extract JSON from model output.")
def build_chat_prompt(title: str, content: str) -> str:
return f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Analyze the news title and content, and return the filters in JSON format with the defined fields.
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
Title: "{title}"
Content: "{content}"<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
def extract_json(text):
match = re.search(r'\{[^{}]*(?:\{[^{}]*\}[^{}]*)*\}', text, re.DOTALL)
if match:
json_text = match.group(0)
# Conversões comuns
json_text = re.sub(r"'", '"', json_text)
json_text = re.sub(r'\bTrue\b', 'true', json_text)
json_text = re.sub(r'\bFalse\b', 'false', json_text)
json_text = re.sub(r",\s*}", "}", json_text)
json_text = re.sub(r",\s*]", "]", json_text)
return json_text.strip()
return text
# -------- API ROUTE --------
@app.get("/filter")
def get_filter(
title: str = Query(..., description="News title"),
content: str = Query(..., description="News content")
):
try:
json_output = infer_filter(title, content)
import json
try:
parsed = json.loads(json_output)
return {"result": parsed}
except json.JSONDecodeError as e:
log.error(f"❌ Erro ao parsear JSON: {e}")
return {"result": json_output, "warning": "JSON returned as string due to parsing error"}
except HTTPException as e:
raise e
except Exception as e:
log.exception("❌ Erro inesperado:")
raise HTTPException(status_code=500, detail="Internal server error during inference.")
@app.on_event("startup")
async def warmup():
log.info("🔥 Executando warmup...")
try:
infer_filter("Test title", "Test content")
log.info("✅ Warmup concluído.")
except Exception as e:
log.warning(f"⚠️ Warmup falhou: {e}")