File size: 5,085 Bytes
aa6da07 a15c41a cda1138 6658bef 59d7833 cda1138 6658bef cda1138 84aad09 cda1138 aa6da07 59d7833 cda1138 a15c41a 59d7833 eeb5ab3 3988dcb a15c41a 59d7833 6658bef cda1138 2c0cc11 cda1138 99ff4e1 2c0cc11 84aad09 a15c41a 59d7833 cda1138 99ff4e1 59d7833 2c0cc11 59d7833 2c0cc11 cda1138 84aad09 6658bef cda1138 59d7833 cda1138 6658bef cda1138 8efc71c 59d7833 aa6da07 99ff4e1 aa6da07 6658bef 59d7833 6658bef 59d7833 84aad09 59d7833 84aad09 59d7833 84aad09 59d7833 84aad09 59d7833 84aad09 59d7833 99ff4e1 59d7833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from fastapi import FastAPI, Query, HTTPException
import torch
import re
import time
import logging
import os
from transformers import AutoTokenizer, GenerationConfig
from peft import AutoPeftModelForCausalLM
import gc
# -------- CONFIGURAÇÕES DE OTIMIZAÇÃO --------
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OMP_NUM_THREADS"] = "2"
os.environ["MKL_NUM_THREADS"] = "2"
torch.set_num_threads(2)
torch.set_num_interop_threads(1)
# -------- LOGGING CONFIG --------
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
log = logging.getLogger("news-filter")
# -------- LOAD MODEL --------
model_name = "habulaj/filterinstruct180"
log.info("🚀 Carregando modelo e tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
padding_side="left"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoPeftModelForCausalLM.from_pretrained(
model_name,
device_map="cpu",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_cache=True,
trust_remote_code=True
)
model.eval()
log.info("✅ Modelo carregado (eval mode).")
generation_config = GenerationConfig(
max_new_tokens=128,
temperature=1.0,
do_sample=False,
num_beams=1,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=2,
repetition_penalty=1.1,
length_penalty=1.0
)
# -------- FASTAPI INIT --------
app = FastAPI(title="News Filter JSON API")
@app.get("/")
def read_root():
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
# -------- INFERÊNCIA --------
def infer_filter(title, content):
log.info(f"🧠 Inferência iniciada para: {title}")
start_time = time.time()
chat_prompt = build_chat_prompt(title, content)
inputs = tokenizer(
chat_prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding=False,
add_special_tokens=False
)
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
with torch.no_grad(), torch.inference_mode():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
num_return_sequences=1,
output_scores=False,
return_dict_in_generate=False
)
generated_tokens = outputs[0][len(input_ids[0]):]
generated = tokenizer.decode(
generated_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
log.info("📤 Resultado gerado:")
log.info(generated)
json_result = extract_json(generated)
duration = time.time() - start_time
log.info(f"✅ JSON extraído em {duration:.2f}s")
# Limpeza de memória
del outputs, generated_tokens, inputs
gc.collect()
if json_result:
return json_result
else:
raise HTTPException(status_code=404, detail="Unable to extract JSON from model output.")
def build_chat_prompt(title: str, content: str) -> str:
return f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Analyze the news title and content, and return the filters in JSON format with the defined fields.
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
Title: "{title}"
Content: "{content}"<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
def extract_json(text):
match = re.search(r'\{[^{}]*(?:\{[^{}]*\}[^{}]*)*\}', text, re.DOTALL)
if match:
json_text = match.group(0)
# Conversões comuns
json_text = re.sub(r"'", '"', json_text)
json_text = re.sub(r'\bTrue\b', 'true', json_text)
json_text = re.sub(r'\bFalse\b', 'false', json_text)
json_text = re.sub(r",\s*}", "}", json_text)
json_text = re.sub(r",\s*]", "]", json_text)
return json_text.strip()
return text
# -------- API ROUTE --------
@app.get("/filter")
def get_filter(
title: str = Query(..., description="News title"),
content: str = Query(..., description="News content")
):
try:
json_output = infer_filter(title, content)
import json
try:
parsed = json.loads(json_output)
return {"result": parsed}
except json.JSONDecodeError as e:
log.error(f"❌ Erro ao parsear JSON: {e}")
return {"result": json_output, "warning": "JSON returned as string due to parsing error"}
except HTTPException as e:
raise e
except Exception as e:
log.exception("❌ Erro inesperado:")
raise HTTPException(status_code=500, detail="Internal server error during inference.")
@app.on_event("startup")
async def warmup():
log.info("🔥 Executando warmup...")
try:
infer_filter("Test title", "Test content")
log.info("✅ Warmup concluído.")
except Exception as e:
log.warning(f"⚠️ Warmup falhou: {e}") |