Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| from sentence_transformers import SentenceTransformer | |
| model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
| input_sentence = st.text_input('Movie title', 'Life of Brian') | |
| #st.write('The current movie title is', title) | |
| #Sentences we want to encode. Example: | |
| sentence = ['This framework generates embeddings for each input sentence'] | |
| #Sentences are encoded by calling model.encode() | |
| embedding = model.encode(input_sentence) | |
| x = st.slider('Select a value') | |
| #embedding = model.encode(input_sentence) | |
| #st.write(x, 'squared is', x * x, 'embedding', embedding[0][0]) | |
| st.write('The embedding of', input_sentence, 'at position',x,'is',embedding[0][int(x)]) | |
| uploaded_file = st.file_uploader("Choose a file") | |
| if uploaded_file is not None: | |
| #read csv | |
| df1=pd.read_csv(uploaded_file) | |