Spaces:
Running
Running
# | |
# SPDX-FileCopyrightText: Hadad <[email protected]> | |
# SPDX-License-Identifier: CC-BY-NC-SA-4.0 | |
# | |
import gradio as gr | |
import requests | |
import json | |
import os | |
import random | |
import time | |
import pytesseract | |
import pdfplumber | |
import docx | |
import pandas as pd | |
import pptx | |
import fitz | |
import io | |
import uuid | |
import concurrent.futures | |
from openai import OpenAI | |
from optillm.cot_reflection import cot_reflection | |
from optillm.leap import leap | |
from optillm.plansearch import plansearch | |
from optillm.reread import re2_approach | |
from optillm.rto import round_trip_optimization | |
from optillm.self_consistency import advanced_self_consistency_approach | |
from optillm.z3_solver import Z3SymPySolverSystem | |
from pathlib import Path | |
from PIL import Image | |
from pptx import Presentation | |
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") | |
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host] | |
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key] | |
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)} | |
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} | |
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) | |
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) | |
MODEL_CHOICES = list(MODEL_MAPPING.values()) | |
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) | |
META_TAGS = os.getenv("META_TAGS") | |
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS")) | |
class SessionWithID(requests.Session): | |
def __init__(self): | |
super().__init__() | |
self.session_id = str(uuid.uuid4()) | |
def create_session(): | |
return SessionWithID() | |
def get_model_key(display_name): | |
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0]) | |
def extract_file_content(file_path): | |
ext = Path(file_path).suffix.lower() | |
content = "" | |
try: | |
if ext == ".pdf": | |
with pdfplumber.open(file_path) as pdf: | |
for page in pdf.pages: | |
text = page.extract_text() | |
if text: | |
content += text + "\n" | |
tables = page.extract_tables() | |
if tables: | |
for table in tables: | |
table_str = "\n".join([", ".join(row) for row in table if row]) | |
content += "\n" + table_str + "\n" | |
elif ext in [".doc", ".docx"]: | |
doc = docx.Document(file_path) | |
for para in doc.paragraphs: | |
content += para.text + "\n" | |
elif ext in [".xlsx", ".xls"]: | |
df = pd.read_excel(file_path) | |
content += df.to_csv(index=False) | |
elif ext in [".ppt", ".pptx"]: | |
prs = Presentation(file_path) | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text") and shape.text: | |
content += shape.text + "\n" | |
elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]: | |
try: | |
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" | |
image = Image.open(file_path) | |
text = pytesseract.image_to_string(image) | |
content += text + "\n" | |
except Exception as e: | |
content += f"{e}\n" | |
else: | |
content = Path(file_path).read_text(encoding="utf-8") | |
except Exception as e: | |
content = f"{file_path}: {e}" | |
return content.strip() | |
def process_ai_response(ai_text): | |
try: | |
result = round_trip_optimization(ai_text) | |
result = re2_approach(result) | |
result = cot_reflection(result) | |
result = advanced_self_consistency_approach(result) | |
result = plansearch(result) | |
result = leap(result) | |
solver = Z3SymPySolverSystem() | |
result = solver.solve(result) | |
return result | |
except Exception: | |
return ai_text | |
def fetch_response(host, provider_key, selected_model, messages, model_config, session_id): | |
client = OpenAI(base_url=host, api_key=provider_key) | |
data = {"model": selected_model, "messages": messages, **model_config} | |
response = client.chat.completions.create(extra_body={"optillm_approach": "rto|re2|cot_reflection|self_consistency|plansearch|leap|z3|bon|moa|mcts|mcp|router|privacy|executecode|json", "session_id": session_id}, **data) | |
ai_text = response.choices[0].message.content if response.choices and response.choices[0].message and response.choices[0].message.content else RESPONSES["RESPONSE_2"] | |
return process_ai_response(ai_text) | |
def chat_with_model(history, user_input, selected_model_display, sess): | |
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS: | |
return RESPONSES["RESPONSE_3"] | |
if not hasattr(sess, "session_id"): | |
sess.session_id = str(uuid.uuid4()) | |
selected_model = get_model_key(selected_model_display) | |
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG) | |
messages = [{"role": "user", "content": user} for user, _ in history] | |
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant] | |
messages.append({"role": "user", "content": user_input}) | |
futures = [] | |
with concurrent.futures.ThreadPoolExecutor(max_workers=len(LINUX_SERVER_HOSTS)) as executor: | |
for host, key in zip(LINUX_SERVER_HOSTS, LINUX_SERVER_PROVIDER_KEYS): | |
futures.append(executor.submit(fetch_response, host, key, selected_model, messages, model_config, sess.session_id)) | |
done, not_done = concurrent.futures.wait(futures, return_when=concurrent.futures.FIRST_COMPLETED) | |
for future in not_done: | |
future.cancel() | |
result = list(done)[0].result() if done else RESPONSES["RESPONSE_2"] | |
return result | |
def respond(multi_input, history, selected_model_display, sess): | |
message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])} | |
if not message["text"] and not message["files"]: | |
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess | |
return | |
combined_input = "" | |
for file_item in message["files"]: | |
file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item | |
file_content = extract_file_content(file_path) | |
combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n" | |
if message["text"]: | |
combined_input += message["text"] | |
history.append([combined_input, ""]) | |
ai_response = chat_with_model(history, combined_input, selected_model_display, sess) | |
history[-1][1] = "" | |
for character in ai_response: | |
history[-1][1] += str(character) | |
time.sleep(0.0009) | |
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess | |
def change_model(new_model_display): | |
return [], create_session(), new_model_display | |
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: | |
user_history = gr.State([]) | |
user_session = gr.State(create_session()) | |
selected_model = gr.State(MODEL_CHOICES[0]) | |
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) | |
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) | |
with gr.Row(): | |
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) | |
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model]) | |
msg.submit(fn=respond, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session]) | |
jarvis.launch(show_api=False, max_file_size="1mb") | |