gemini_model
#2
by
hammaadworks
- opened
- .gradio/certificate.pem +0 -31
- agent.py +0 -117
- app.py +5 -7
- gaia_agent.py +33 -0
- logic.py +6 -50
- requirements.txt +1 -6
.gradio/certificate.pem
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
-----BEGIN CERTIFICATE-----
|
2 |
-
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
-
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
-
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
-
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
-
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
-
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
-
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
-
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
-
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
-
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
-
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
-
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
-
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
-
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
-
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
-
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
-
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
-
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
-
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
-
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
-
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
-
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
-
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
-
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
-
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
-
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
-
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
-
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
-
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
-
-----END CERTIFICATE-----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
agent.py
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from pathlib import Path
|
3 |
-
from typing import Optional, Union
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
from smolagents import (CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool,
|
8 |
-
LiteLLMModel, PythonInterpreterTool,
|
9 |
-
WikipediaSearchTool)
|
10 |
-
from smolagents.tools import Tool
|
11 |
-
from tabulate import tabulate
|
12 |
-
|
13 |
-
# Load environment variables
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
# Initialize the model
|
17 |
-
model = LiteLLMModel(
|
18 |
-
model_id=os.getenv("GEMINI_MODEL"), api_key=os.getenv("GEMINI_API_KEY")
|
19 |
-
)
|
20 |
-
|
21 |
-
|
22 |
-
class ExcelToTextTool(Tool):
|
23 |
-
"""Render an Excel worksheet as a Markdown table."""
|
24 |
-
|
25 |
-
name = "excel_to_text"
|
26 |
-
description = (
|
27 |
-
"Read an Excel file and return a Markdown table of the requested sheet. "
|
28 |
-
"Accepts either the sheet name or a zero-based index (as a string)."
|
29 |
-
)
|
30 |
-
|
31 |
-
inputs = {
|
32 |
-
"excel_path": {
|
33 |
-
"type": "string",
|
34 |
-
"description": "Path to the Excel file (.xlsx or .xls).",
|
35 |
-
},
|
36 |
-
"sheet_name": {
|
37 |
-
"type": "string",
|
38 |
-
"description": (
|
39 |
-
"Worksheet name or zero-based index (as a string). "
|
40 |
-
"Optional; defaults to the first sheet."
|
41 |
-
),
|
42 |
-
"nullable": True,
|
43 |
-
},
|
44 |
-
}
|
45 |
-
|
46 |
-
output_type = "string"
|
47 |
-
|
48 |
-
def forward(self, excel_path: str, sheet_name: Optional[str] = None) -> str:
|
49 |
-
"""Load the Excel file and return the sheet as a Markdown table.
|
50 |
-
|
51 |
-
Args:
|
52 |
-
excel_path: Path to the Excel file.
|
53 |
-
sheet_name: Optional name or index of the sheet to read. If None, reads the first sheet.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
A Markdown table representing the Excel sheet, or an error message if the file is not found or cannot be read.
|
57 |
-
"""
|
58 |
-
|
59 |
-
file_path = Path(excel_path).expanduser().resolve()
|
60 |
-
if not file_path.is_file():
|
61 |
-
return f"Error: Excel file not found at {file_path}"
|
62 |
-
|
63 |
-
try:
|
64 |
-
sheet: Union[str, int] = (
|
65 |
-
int(sheet_name)
|
66 |
-
if sheet_name and sheet_name.isdigit()
|
67 |
-
else sheet_name or 0
|
68 |
-
)
|
69 |
-
|
70 |
-
df = pd.read_excel(file_path, sheet_name=sheet)
|
71 |
-
|
72 |
-
if hasattr(df, "to_markdown"):
|
73 |
-
return df.to_markdown(index=False)
|
74 |
-
|
75 |
-
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
|
76 |
-
|
77 |
-
except Exception as e:
|
78 |
-
return f"Error reading Excel file: {e}"
|
79 |
-
|
80 |
-
|
81 |
-
class GaiaAgent:
|
82 |
-
"""An agent capable of using tools to answer general questions."""
|
83 |
-
|
84 |
-
def __init__(self):
|
85 |
-
"""Initializes the GaiaAgent with a set of tools."""
|
86 |
-
|
87 |
-
print("GaiaAgent initialized with tools.")
|
88 |
-
|
89 |
-
tools = [
|
90 |
-
DuckDuckGoSearchTool(),
|
91 |
-
WikipediaSearchTool(),
|
92 |
-
ExcelToTextTool(),
|
93 |
-
PythonInterpreterTool(),
|
94 |
-
FinalAnswerTool(),
|
95 |
-
]
|
96 |
-
|
97 |
-
self.agent = CodeAgent(
|
98 |
-
model=model,
|
99 |
-
tools=tools,
|
100 |
-
add_base_tools=True,
|
101 |
-
additional_authorized_imports=["pandas", "numpy", "csv", "subprocess"],
|
102 |
-
)
|
103 |
-
|
104 |
-
def __call__(self, task_id: str, question: str) -> str:
|
105 |
-
"""Processes a question using the agent and its tools.
|
106 |
-
|
107 |
-
Args:
|
108 |
-
task_id: A unique identifier for the task.
|
109 |
-
question: The question to be answered.
|
110 |
-
|
111 |
-
Returns:
|
112 |
-
The answer generated by the agent.
|
113 |
-
"""
|
114 |
-
print(f"Agent received task_id='{task_id}' | question='{question[:50]}...'")
|
115 |
-
answer = self.agent.run(question)
|
116 |
-
print(f"Agent returning answer: {answer}")
|
117 |
-
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
|
3 |
-
import
|
4 |
import gradio as gr
|
5 |
import logic
|
6 |
import pandas as pd
|
@@ -9,9 +9,7 @@ from dotenv import load_dotenv
|
|
9 |
load_dotenv()
|
10 |
|
11 |
|
12 |
-
def run_and_submit_all(
|
13 |
-
profile: gr.OAuthProfile | None,
|
14 |
-
) -> tuple[str, pd.DataFrame | None]:
|
15 |
"""Fetches all questions, runs the BasicAgent on them, submits all answers,
|
16 |
and displays the results.
|
17 |
|
@@ -41,7 +39,7 @@ def run_and_submit_all(
|
|
41 |
|
42 |
# 1. Instantiate Agent
|
43 |
try:
|
44 |
-
|
45 |
except Exception as e:
|
46 |
print(f"Error instantiating agent: {e}")
|
47 |
return f"Error initializing agent: {e}", None
|
@@ -53,7 +51,7 @@ def run_and_submit_all(
|
|
53 |
return str(e), None
|
54 |
|
55 |
# 3. Run the Agent
|
56 |
-
results_log, answers_payload = logic.run_agent(
|
57 |
if not answers_payload:
|
58 |
print("Agent did not produce any answers to submit.")
|
59 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
@@ -138,4 +136,4 @@ if __name__ == "__main__":
|
|
138 |
print("-" * (60 + len(" App Starting ")) + "\n")
|
139 |
|
140 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
141 |
-
gaia_ui.launch(debug=True, share=
|
|
|
1 |
import os
|
2 |
|
3 |
+
import gaia_agent
|
4 |
import gradio as gr
|
5 |
import logic
|
6 |
import pandas as pd
|
|
|
9 |
load_dotenv()
|
10 |
|
11 |
|
12 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
|
13 |
"""Fetches all questions, runs the BasicAgent on them, submits all answers,
|
14 |
and displays the results.
|
15 |
|
|
|
39 |
|
40 |
# 1. Instantiate Agent
|
41 |
try:
|
42 |
+
agent = gaia_agent.GaiaAgent()
|
43 |
except Exception as e:
|
44 |
print(f"Error instantiating agent: {e}")
|
45 |
return f"Error initializing agent: {e}", None
|
|
|
51 |
return str(e), None
|
52 |
|
53 |
# 3. Run the Agent
|
54 |
+
results_log, answers_payload = logic.run_agent(agent, questions_data)
|
55 |
if not answers_payload:
|
56 |
print("Agent did not produce any answers to submit.")
|
57 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
136 |
print("-" * (60 + len(" App Starting ")) + "\n")
|
137 |
|
138 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
139 |
+
gaia_ui.launch(debug=True, share=False)
|
gaia_agent.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class GaiaAgent:
|
2 |
+
"""
|
3 |
+
A basic agent that receives a question and returns a fixed answer.
|
4 |
+
|
5 |
+
This class serves as a placeholder or a simple baseline agent for testing
|
6 |
+
and demonstration purposes. It does not perform any sophisticated
|
7 |
+
reasoning or information retrieval.
|
8 |
+
"""
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
"""
|
12 |
+
Initializes the GaiaAgent.
|
13 |
+
|
14 |
+
Currently, this constructor simply prints a message to the console.
|
15 |
+
In a more complex implementation, this method might load a model,
|
16 |
+
connect to a database, or perform other setup tasks.
|
17 |
+
"""
|
18 |
+
print("BasicAgent initialized.")
|
19 |
+
|
20 |
+
def __call__(self, question: str) -> str:
|
21 |
+
"""
|
22 |
+
Processes a question and returns a fixed answer.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
question: The question to be processed.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
A fixed string representing the agent's answer.
|
29 |
+
"""
|
30 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
31 |
+
fixed_answer = "This is a default answer."
|
32 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
33 |
+
return fixed_answer
|
logic.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
from typing import Dict, List, Tuple
|
2 |
-
|
3 |
-
import tempfile
|
4 |
-
from pathlib import Path
|
5 |
import pandas as pd
|
6 |
import requests
|
7 |
-
from
|
8 |
from pandas import DataFrame
|
9 |
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
|
13 |
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
|
14 |
-
FILE_PATH = f"{DEFAULT_API_URL}/files/"
|
15 |
|
16 |
|
17 |
# --- Helper Methods ---
|
@@ -116,9 +113,8 @@ def submit_answers(submission_data: dict, results_log: list) -> Tuple[str, DataF
|
|
116 |
return status_message, results_df
|
117 |
|
118 |
|
119 |
-
def run_agent(
|
120 |
-
|
121 |
-
) -> Tuple[List[Dict], List[Dict]]:
|
122 |
"""Runs the agent on a list of questions and returns the results and answers.
|
123 |
|
124 |
This function iterates through a list of questions, runs the provided agent on each
|
@@ -126,7 +122,7 @@ def run_agent(
|
|
126 |
agent execution and returns the results log and the answers payload.
|
127 |
|
128 |
Args:
|
129 |
-
|
130 |
generating answers to the questions.
|
131 |
questions_data (List[Dict]): A list of dictionaries, where each dictionary
|
132 |
represents a question and contains at least the 'task_id' and 'question' keys.
|
@@ -145,12 +141,11 @@ def run_agent(
|
|
145 |
for item in questions_data:
|
146 |
task_id = item.get("task_id")
|
147 |
question_text = item.get("question")
|
148 |
-
question_text = process_file(task_id, question_text)
|
149 |
if not task_id or question_text is None:
|
150 |
print(f"⚠️ Skipping invalid item (missing task_id or question): {item}")
|
151 |
continue
|
152 |
try:
|
153 |
-
submitted_answer =
|
154 |
answers_payload.append(
|
155 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
156 |
)
|
@@ -166,42 +161,3 @@ def run_agent(
|
|
166 |
}
|
167 |
)
|
168 |
return results_log, answers_payload
|
169 |
-
|
170 |
-
|
171 |
-
def process_file(task_id: str, question_text: str) -> str:
|
172 |
-
"""
|
173 |
-
Attempt to download a file associated with a task from the API.
|
174 |
-
|
175 |
-
- If the file exists (HTTP 200), it is saved to a temp directory and the local file path is returned.
|
176 |
-
- If no file is found (HTTP 404), returns None.
|
177 |
-
- For all other HTTP errors, the exception is propagated to the caller.
|
178 |
-
"""
|
179 |
-
file_url = f"{FILE_PATH}{task_id}"
|
180 |
-
|
181 |
-
try:
|
182 |
-
response = requests.get(file_url, timeout=30)
|
183 |
-
response.raise_for_status()
|
184 |
-
except requests.exceptions.RequestException as exc:
|
185 |
-
print(f"Exception in download_file>> {str(exc)}")
|
186 |
-
return question_text # Unable to get the file
|
187 |
-
|
188 |
-
# Determine filename from 'Content-Disposition' header, fallback to task_id
|
189 |
-
content_disposition = response.headers.get("content-disposition", "")
|
190 |
-
filename = task_id
|
191 |
-
match = re.search(r'filename="([^"]+)"', content_disposition)
|
192 |
-
if match:
|
193 |
-
filename = match.group(1)
|
194 |
-
|
195 |
-
# Save file in a temp directory
|
196 |
-
temp_storage_dir = Path(tempfile.gettempdir()) / "gaia_cached_files"
|
197 |
-
temp_storage_dir.mkdir(parents=True, exist_ok=True)
|
198 |
-
|
199 |
-
file_path = temp_storage_dir / filename
|
200 |
-
file_path.write_bytes(response.content)
|
201 |
-
return (
|
202 |
-
f"{question_text}\n\n"
|
203 |
-
f"---\n"
|
204 |
-
f"A file was downloaded for this task and saved locally at:\n"
|
205 |
-
f"{str(file_path)}\n"
|
206 |
-
f"---\n\n"
|
207 |
-
)
|
|
|
1 |
from typing import Dict, List, Tuple
|
2 |
+
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import requests
|
5 |
+
from gaia_agent import GaiaAgent
|
6 |
from pandas import DataFrame
|
7 |
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
|
11 |
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
|
|
|
12 |
|
13 |
|
14 |
# --- Helper Methods ---
|
|
|
113 |
return status_message, results_df
|
114 |
|
115 |
|
116 |
+
def run_agent(agent: GaiaAgent,
|
117 |
+
questions_data: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
|
|
|
118 |
"""Runs the agent on a list of questions and returns the results and answers.
|
119 |
|
120 |
This function iterates through a list of questions, runs the provided agent on each
|
|
|
122 |
agent execution and returns the results log and the answers payload.
|
123 |
|
124 |
Args:
|
125 |
+
agent (GaiaAgent): An instance of the GaiaAgent class, which is responsible for
|
126 |
generating answers to the questions.
|
127 |
questions_data (List[Dict]): A list of dictionaries, where each dictionary
|
128 |
represents a question and contains at least the 'task_id' and 'question' keys.
|
|
|
141 |
for item in questions_data:
|
142 |
task_id = item.get("task_id")
|
143 |
question_text = item.get("question")
|
|
|
144 |
if not task_id or question_text is None:
|
145 |
print(f"⚠️ Skipping invalid item (missing task_id or question): {item}")
|
146 |
continue
|
147 |
try:
|
148 |
+
submitted_answer = agent(question_text)
|
149 |
answers_payload.append(
|
150 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
151 |
)
|
|
|
161 |
}
|
162 |
)
|
163 |
return results_log, answers_payload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -2,9 +2,4 @@ gradio
|
|
2 |
gradio[oauth]
|
3 |
requests
|
4 |
python-dotenv
|
5 |
-
pandas
|
6 |
-
smolagents
|
7 |
-
wikipedia-api
|
8 |
-
google-generativeai
|
9 |
-
smolagents[litellm]
|
10 |
-
tabulate
|
|
|
2 |
gradio[oauth]
|
3 |
requests
|
4 |
python-dotenv
|
5 |
+
pandas
|
|
|
|
|
|
|
|
|
|