Spaces:
Sleeping
Sleeping
File size: 34,533 Bytes
fd9d3d4 c4937ea 12b213c c4937ea eb4d305 3e28eb8 fd9d3d4 eb4d305 fd9d3d4 3e28eb8 fd9d3d4 3e28eb8 fd9d3d4 3e28eb8 fd9d3d4 3e28eb8 fd9d3d4 3e28eb8 fd9d3d4 c4937ea fd9d3d4 c4937ea 4771e7c c4937ea 4771e7c c4937ea 4771e7c c4937ea 4771e7c c4937ea fd9d3d4 12b213c fd9d3d4 c4937ea fd9d3d4 c4937ea fd9d3d4 12b213c fd9d3d4 12b213c c4937ea e5964c3 c4937ea 12b213c e5964c3 c4937ea fd9d3d4 12b213c fd9d3d4 c4937ea fd9d3d4 fca36a0 c4937ea fd9d3d4 db23abc fd9d3d4 e5964c3 12b213c fd9d3d4 db23abc fd9d3d4 db23abc fd9d3d4 db23abc fd9d3d4 12b213c fd9d3d4 12b213c fd9d3d4 594a845 fd9d3d4 78f9307 1f26ecc fd9d3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
import os
import sys
import gradio as gr
from PIL import Image
import torch
import numpy as np
import cv2
import time
import json
import traceback
# Simple timestamped logger
def log(msg: str) -> None:
print(f"[{time.strftime('%H:%M:%S')}] {msg}", flush=True)
# Writable cache directory for HF downloads
HF_CACHE_DIR = os.getenv("HF_CACHE_DIR", "/data/hf-cache")
try:
os.makedirs(HF_CACHE_DIR, exist_ok=True)
except Exception:
pass
# Add custom modules to path - try multiple possible locations
possible_paths = [
"./custom_models",
"../custom_models",
"./Dense-Captioning-Platform/custom_models"
]
for path in possible_paths:
if os.path.exists(path):
sys.path.insert(0, os.path.abspath(path))
break
# Add mmcv to path if it exists
if os.path.exists('./mmcv'):
sys.path.insert(0, os.path.abspath('./mmcv'))
print("β
Added local mmcv to path")
# Import and register custom modules
try:
from custom_models import register
print("β
Custom modules registered successfully")
except Exception as e:
print(f"β οΈ Warning: Could not register custom modules: {e}")
# ----------------------
# Optional MedSAM integration
# ----------------------
class MedSAMIntegrator:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.medsam_model = None
self.current_image = None
self.current_image_path = None
self.embedding = None
self._load_medsam_model()
def _ensure_segment_anything(self):
try:
import segment_anything # noqa: F401
return True
except Exception as e:
print(f"β segment_anything not available: {e}. Install it in Dockerfile to enable MedSAM.")
return False
def _load_medsam_model(self):
try:
# Ensure library is present
if not self._ensure_segment_anything():
print("MedSAM features disabled (segment_anything not available)")
return
from segment_anything import sam_model_registry as _reg
import torch as _torch
# Preferred local path in HF cache
medsam_ckpt_path = os.path.join(HF_CACHE_DIR, "medsam_vit_b.pth")
# If not present, fetch from HF Hub using provided repo or default
if not os.path.exists(medsam_ckpt_path):
try:
from huggingface_hub import hf_hub_download, list_repo_files
repo_id = os.environ.get("HF_MEDSAM_REPO", "Aniketg6/Fine-Tuned-MedSAM")
print(f"π Trying to download MedSAM checkpoint from {repo_id} ...")
files = list_repo_files(repo_id)
candidate = None
for f in files:
lf = f.lower()
if lf.endswith(".pth") or lf.endswith(".pt"):
candidate = f
break
if candidate is None:
candidate = "medsam_vit_b.pth"
ckpt_path = hf_hub_download(repo_id=repo_id, filename=candidate, cache_dir=HF_CACHE_DIR)
medsam_ckpt_path = ckpt_path
print(f"β
Downloaded MedSAM checkpoint: {medsam_ckpt_path}")
except Exception as dl_err:
print(f"β Could not fetch MedSAM checkpoint from HF Hub: {dl_err}")
print("MedSAM features disabled (no checkpoint)")
return
# Load checkpoint
checkpoint = _torch.load(medsam_ckpt_path, map_location='cpu')
self.medsam_model = _reg["vit_b"](checkpoint=None)
self.medsam_model.load_state_dict(checkpoint)
self.medsam_model.to(self.device)
self.medsam_model.eval()
print("β MedSAM model loaded successfully")
except Exception as e:
print(f"β MedSAM model not available: {e}. MedSAM features disabled.")
def is_available(self):
return self.medsam_model is not None
def load_image(self, image_path, precomputed_embedding=None):
try:
from skimage import transform, io # local import to avoid hard dep if unused
img_np = io.imread(image_path)
if len(img_np.shape) == 2:
img_3c = np.repeat(img_np[:, :, None], 3, axis=-1)
else:
img_3c = img_np
self.current_image = img_3c
self.current_image_path = image_path
if precomputed_embedding is not None:
if not self.set_precomputed_embedding(precomputed_embedding):
self.get_embeddings()
else:
self.get_embeddings()
return True
except Exception as e:
print(f"Error loading image for MedSAM: {e}")
return False
@torch.no_grad()
def get_embeddings(self):
if self.current_image is None or self.medsam_model is None:
return None
from skimage import transform
img_1024 = transform.resize(
self.current_image, (1024, 1024), order=3, preserve_range=True, anti_aliasing=True
).astype(np.uint8)
img_1024 = (img_1024 - img_1024.min()) / np.clip(img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None)
img_1024_tensor = (
torch.tensor(img_1024).float().permute(2, 0, 1).unsqueeze(0).to(self.device)
)
self.embedding = self.medsam_model.image_encoder(img_1024_tensor)
return self.embedding
def set_precomputed_embedding(self, embedding_array):
try:
if isinstance(embedding_array, np.ndarray):
embedding_tensor = torch.tensor(embedding_array).to(self.device)
self.embedding = embedding_tensor
return True
return False
except Exception as e:
print(f"Error setting precomputed embedding: {e}")
return False
@torch.no_grad()
def medsam_inference(self, box_1024, height, width):
if self.embedding is None or self.medsam_model is None:
return None
box_torch = torch.as_tensor(box_1024, dtype=torch.float, device=self.embedding.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :]
sparse_embeddings, dense_embeddings = self.medsam_model.prompt_encoder(
points=None, boxes=box_torch, masks=None,
)
low_res_logits, _ = self.medsam_model.mask_decoder(
image_embeddings=self.embedding,
image_pe=self.medsam_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
low_res_pred = torch.sigmoid(low_res_logits)
low_res_pred = torch.nn.functional.interpolate(
low_res_pred, size=(height, width), mode="bilinear", align_corners=False,
)
low_res_pred = low_res_pred.squeeze().cpu().numpy()
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
return medsam_seg
def segment_with_box(self, bbox):
if self.embedding is None or self.current_image is None:
return None
try:
H, W, _ = self.current_image.shape
x1, y1, x2, y2 = bbox
x1 = max(0, min(int(x1), W - 1))
y1 = max(0, min(int(y1), H - 1))
x2 = max(0, min(int(x2), W - 1))
y2 = max(0, min(int(y2), H - 1))
if x2 <= x1:
x2 = min(x1 + 10, W - 1)
if y2 <= y1:
y2 = min(y1 + 10, H - 1)
box_np = np.array([[x1, y1, x2, y2]], dtype=float)
box_1024 = box_np / np.array([W, H, W, H]) * 1024.0
medsam_mask = self.medsam_inference(box_1024, H, W)
if medsam_mask is not None:
return {"mask": medsam_mask, "confidence": 1.0, "method": "medsam_box"}
return None
except Exception as e:
print(f"Error in MedSAM box-based segmentation: {e}")
return None
# Single global instance
_medsam = MedSAMIntegrator()
def _extract_bboxes_from_mmdet_result(det_result):
"""Extract Nx4 xyxy bboxes from various MMDet result formats."""
boxes = []
try:
# MMDet 3.x: list of DetDataSample
if isinstance(det_result, list) and len(det_result) > 0:
sample = det_result[0]
if hasattr(sample, 'pred_instances'):
inst = sample.pred_instances
if hasattr(inst, 'bboxes'):
b = inst.bboxes
# mmengine structures may use .tensor for boxes
if hasattr(b, 'tensor'):
b = b.tensor
boxes = b.detach().cpu().numpy().tolist()
# Single DetDataSample
elif hasattr(det_result, 'pred_instances'):
inst = det_result.pred_instances
if hasattr(inst, 'bboxes'):
b = inst.bboxes
if hasattr(b, 'tensor'):
b = b.tensor
boxes = b.detach().cpu().numpy().tolist()
# MMDet 2.x: tuple of (bbox_result, segm_result)
elif isinstance(det_result, tuple) and len(det_result) >= 1:
bbox_result = det_result[0]
# bbox_result is list per class, each Nx5 [x1,y1,x2,y2,score]
if isinstance(bbox_result, (list, tuple)):
for arr in bbox_result:
try:
arr_np = np.array(arr)
if arr_np.ndim == 2 and arr_np.shape[1] >= 4:
boxes.extend(arr_np[:, :4].tolist())
except Exception:
continue
except Exception as e:
print(f"Failed to parse MMDet result for boxes: {e}")
return boxes
def _overlay_masks_on_image(image_pil, mask_list, alpha=0.4):
"""Overlay binary masks on an image with random colors."""
if image_pil is None or not mask_list:
return image_pil
img = np.array(image_pil.convert('RGB'))
overlay = img.copy()
for idx, m in enumerate(mask_list):
if m is None or 'mask' not in m or m['mask'] is None:
continue
mask = m['mask'].astype(bool)
color = np.random.RandomState(seed=idx + 1234).randint(0, 255, size=3)
overlay[mask] = (0.5 * overlay[mask] + 0.5 * color).astype(np.uint8)
blended = (alpha * overlay + (1 - alpha) * img).astype(np.uint8)
return Image.fromarray(blended)
def _mask_to_polygons(mask: np.ndarray):
"""Convert a binary mask (H,W) to a list of polygons ([[x,y], ...]) using OpenCV contours."""
try:
mask_u8 = (mask.astype(np.uint8) * 255)
contours, _ = cv2.findContours(mask_u8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
polygons = []
for cnt in contours:
if cnt is None or len(cnt) < 3:
continue
# Simplify contour slightly
epsilon = 0.002 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
poly = approx.reshape(-1, 2).tolist()
polygons.append(poly)
return polygons
except Exception as e:
print(f"_mask_to_polygons failed: {e}")
return []
def _find_largest_foreground_bbox(pil_img: Image.Image):
"""Heuristic: find largest foreground region bbox via Otsu threshold on grayscale.
Returns [x1, y1, x2, y2] or full-image bbox if none found."""
try:
img = np.array(pil_img.convert('RGB'))
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Otsu threshold (invert if needed by checking mean)
_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Assume foreground is darker; invert if threshold yields background as white majority
if th.mean() > 127:
th = 255 - th
# Morph close to connect regions
kernel = np.ones((5, 5), np.uint8)
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
W, H = pil_img.size
return [0, 0, W - 1, H - 1]
# Largest contour by area
cnt = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(cnt)
# Pad a little
pad = int(0.02 * max(w, h))
x1 = max(0, x - pad)
y1 = max(0, y - pad)
x2 = min(img.shape[1] - 1, x + w + pad)
y2 = min(img.shape[0] - 1, y + h + pad)
return [x1, y1, x2, y2]
except Exception as e:
print(f"_find_largest_foreground_bbox failed: {e}")
W, H = pil_img.size
return [0, 0, W - 1, H - 1]
def _find_topk_foreground_bboxes(pil_img: Image.Image, max_regions: int = 20, min_area: int = 100):
"""Find top-K foreground bboxes via Otsu threshold + morphology. Returns list of [x1,y1,x2,y2]."""
try:
img = np.array(pil_img.convert('RGB'))
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
if th.mean() > 127:
th = 255 - th
kernel = np.ones((3, 3), np.uint8)
th = cv2.morphologyEx(th, cv2.MORPH_OPEN, kernel, iterations=1)
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return []
contours = sorted(contours, key=cv2.contourArea, reverse=True)
bboxes = []
H, W = img.shape[:2]
for cnt in contours:
area = cv2.contourArea(cnt)
if area < min_area:
continue
x, y, w, h = cv2.boundingRect(cnt)
# Filter very thin shapes
if w < 5 or h < 5:
continue
pad = int(0.01 * max(w, h))
x1 = max(0, x - pad)
y1 = max(0, y - pad)
x2 = min(W - 1, x + w + pad)
y2 = min(H - 1, y + h + pad)
bboxes.append([x1, y1, x2, y2])
if len(bboxes) >= max_regions:
break
return bboxes
except Exception as e:
print(f"_find_topk_foreground_bboxes failed: {e}")
return []
# Try to import mmdet for inference
try:
from mmdet.apis import init_detector, inference_detector
MM_DET_AVAILABLE = True
print("β
MMDetection available for inference")
except ImportError as e:
print(f"β οΈ MMDetection import failed: {e}")
print("β MMDetection not available - install in Dockerfile")
MM_DET_AVAILABLE = False
# === Chart Type Classification (DocFigure) ===
print("π Loading Chart Classification Model...")
# Chart type labels from DocFigure dataset (28 classes)
CHART_TYPE_LABELS = [
'Line graph', 'Natural image', 'Table', '3D object', 'Bar plot', 'Scatter plot',
'Medical image', 'Sketch', 'Geographic map', 'Flow chart', 'Heat map', 'Mask',
'Block diagram', 'Venn diagram', 'Confusion matrix', 'Histogram', 'Box plot',
'Vector plot', 'Pie chart', 'Surface plot', 'Algorithm', 'Contour plot',
'Tree diagram', 'Bubble chart', 'Polar plot', 'Area chart', 'Pareto chart', 'Radar chart'
]
try:
# Load the chart_type.pth model file from Hugging Face Hub
from huggingface_hub import hf_hub_download
from torchvision import transforms
print("π Downloading chart_type.pth from Hugging Face Hub...")
chart_type_path = hf_hub_download(
repo_id="hanszhu/ChartTypeNet-DocFigure",
filename="chart_type.pth",
cache_dir=HF_CACHE_DIR
)
print(f"β
Downloaded to: {chart_type_path}")
# Load the PyTorch model
loaded_data = torch.load(chart_type_path, map_location='cpu')
# Check if it's a state dict or a complete model
if isinstance(loaded_data, dict):
# Check if it's a checkpoint with model_state_dict
if "model_state_dict" in loaded_data:
print("π Loading checkpoint, extracting model_state_dict...")
state_dict = loaded_data["model_state_dict"]
else:
# It's a direct state dict
print("π Loading state dict, creating model architecture...")
state_dict = loaded_data
# Strip "backbone." prefix from state dict keys if present
cleaned_state_dict = {}
for key, value in state_dict.items():
if key.startswith("backbone."):
# Remove "backbone." prefix
new_key = key[9:]
cleaned_state_dict[new_key] = value
else:
cleaned_state_dict[key] = value
print(f"π Cleaned state dict: {len(cleaned_state_dict)} keys")
# Create the model architecture
from torchvision.models import resnet50
chart_type_model = resnet50(pretrained=False)
# Create the correct classifier structure to match the state dict
import torch.nn as nn
in_features = chart_type_model.fc.in_features
dropout = nn.Dropout(0.5)
chart_type_model.fc = nn.Sequential(
nn.Linear(in_features, 512),
nn.ReLU(inplace=True),
dropout,
nn.Linear(512, 28)
)
# Load the cleaned state dict
chart_type_model.load_state_dict(cleaned_state_dict)
else:
# It's a complete model
chart_type_model = loaded_data
chart_type_model.eval()
# Create a simple processor for the model
chart_type_processor = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
CHART_TYPE_AVAILABLE = True
print("β
Chart classification model loaded")
except Exception as e:
print(f"β οΈ Failed to load chart classification model: {e}")
import traceback
print("π Full traceback:")
traceback.print_exc()
CHART_TYPE_AVAILABLE = False
# === Chart Element Detection (Cascade R-CNN) ===
element_model = None
datapoint_model = None
print(f"π MM_DET_AVAILABLE: {MM_DET_AVAILABLE}")
if MM_DET_AVAILABLE:
# Check if config files exist
element_config = "models/chart_elementnet_swin.py"
point_config = "models/chart_pointnet_swin.py"
print(f"π Checking config files...")
print(f"π Element config exists: {os.path.exists(element_config)}")
print(f"π Point config exists: {os.path.exists(point_config)}")
print(f"π Current working directory: {os.getcwd()}")
print(f"π Files in models directory: {os.listdir('models') if os.path.exists('models') else 'models directory not found'}")
try:
print("π Loading ChartElementNet-MultiClass (Cascade R-CNN)...")
print(f"π Config path: {element_config}")
print(f"π Weights path: hanszhu/ChartElementNet-MultiClass")
print(f"π About to call init_detector...")
# Download model from Hugging Face Hub
from huggingface_hub import hf_hub_download
print("π Downloading ChartElementNet weights from Hugging Face Hub...")
element_checkpoint = hf_hub_download(
repo_id="hanszhu/ChartElementNet-MultiClass",
filename="chart_label+.pth",
cache_dir=HF_CACHE_DIR
)
print(f"β
Downloaded to: {element_checkpoint}")
# Use local config with downloaded weights
element_model = init_detector(element_config, element_checkpoint, device="cpu")
print("β
ChartElementNet loaded successfully")
except Exception as e:
print(f"β Failed to load ChartElementNet: {e}")
print(f"π Error type: {type(e).__name__}")
print(f"π Error details: {str(e)}")
import traceback
print("π Full traceback:")
traceback.print_exc()
try:
print("π Loading ChartPointNet-InstanceSeg (Mask R-CNN)...")
print(f"π Config path: {point_config}")
print(f"π Weights path: hanszhu/ChartPointNet-InstanceSeg")
print(f"π About to call init_detector...")
# Download model from Hugging Face Hub
print("π Downloading ChartPointNet weights from Hugging Face Hub...")
datapoint_checkpoint = hf_hub_download(
repo_id="hanszhu/ChartPointNet-InstanceSeg",
filename="chart_datapoint.pth",
cache_dir=HF_CACHE_DIR
)
print(f"β
Downloaded to: {datapoint_checkpoint}")
# Use local config with downloaded weights
datapoint_model = init_detector(point_config, datapoint_checkpoint, device="cpu")
print("β
ChartPointNet loaded successfully")
except Exception as e:
print(f"β Failed to load ChartPointNet: {e}")
print(f"π Error type: {type(e).__name__}")
print(f"π Error details: {str(e)}")
import traceback
print("π Full traceback:")
traceback.print_exc()
else:
print("β MMDetection not available - cannot load custom models")
print(f"π MM_DET_AVAILABLE was False")
print(f"π Final model status:")
print(f"π element_model: {element_model is not None}")
print(f"π datapoint_model: {datapoint_model is not None}")
# === Main prediction function ===
def analyze(image):
try:
log("analyze: start")
start_time = time.time()
# Handle filepath input
if isinstance(image, str):
image = Image.open(image).convert("RGB")
elif image is None:
return {"error": "No image provided"}
if not isinstance(image, Image.Image):
return {"error": "Invalid image format"}
result = {
"chart_type_id": "Model not available",
"chart_type_label": "Model not available",
"element_result": "MMDetection models not available",
"datapoint_result": "MMDetection models not available",
"status": "Basic chart classification only",
"processing_time": 0.0,
"medsam": {"available": False}
}
# Chart Type Classification
if CHART_TYPE_AVAILABLE:
try:
processed_image = chart_type_processor(image).unsqueeze(0)
with torch.no_grad():
outputs = chart_type_model(processed_image)
logits = outputs if isinstance(outputs, torch.Tensor) else getattr(outputs, 'logits', outputs)
predicted_class = logits.argmax(dim=-1).item()
result["chart_type_id"] = predicted_class
result["chart_type_label"] = CHART_TYPE_LABELS[predicted_class] if 0 <= predicted_class < len(CHART_TYPE_LABELS) else f"Unknown ({predicted_class})"
result["status"] = "Chart classification completed"
log(f"analyze: chart_type={result['chart_type_label']} ({result['chart_type_id']})")
except Exception:
log("analyze: chart classification error")
traceback.print_exc()
is_medical = str(result.get("chart_type_label", "")).strip().lower() == "medical image"
# Element Detection (skip for medical images)
if element_model is not None and not is_medical:
try:
np_img = np.array(image.convert("RGB"))[:, :, ::-1]
element_result = inference_detector(element_model, np_img)
if isinstance(element_result, tuple):
bbox_result, segm_result = element_result
element_data = {
"bboxes": bbox_result.tolist() if hasattr(bbox_result, 'tolist') else str(bbox_result),
"segments": segm_result.tolist() if hasattr(segm_result, 'tolist') else str(segm_result)
}
else:
element_data = str(element_result)
result["element_result"] = element_data
result["status"] = "Chart classification + element detection completed"
log("analyze: element detection done")
except Exception:
log("analyze: element detection error")
traceback.print_exc()
elif is_medical:
result["element_result"] = "skipped for medical image"
# Datapoint Segmentation (skip for medical images)
if datapoint_model is not None and not is_medical:
try:
np_img = np.array(image.convert("RGB"))[:, :, ::-1]
datapoint_result = inference_detector(datapoint_model, np_img)
if isinstance(datapoint_result, tuple):
bbox_result, segm_result = datapoint_result
datapoint_data = {
"bboxes": bbox_result.tolist() if hasattr(bbox_result, 'tolist') else str(bbox_result),
"segments": segm_result.tolist() if hasattr(segm_result, 'tolist') else str(segm_result)
}
else:
datapoint_data = str(datapoint_result)
result["datapoint_result"] = datapoint_data
result["status"] = "Full analysis completed"
log("analyze: datapoint segmentation done")
except Exception:
log("analyze: datapoint segmentation error")
traceback.print_exc()
elif is_medical:
result["datapoint_result"] = "skipped for medical image"
# MedSAM availability info
try:
label_lower = str(result.get("chart_type_label", "")).strip().lower()
if label_lower == "medical image":
if _medsam.is_available():
result["medsam"] = {"available": True}
else:
result["medsam"] = {"available": False, "reason": "segment_anything or checkpoint missing"}
except Exception:
log("analyze: medsam availability annotation error")
traceback.print_exc()
result["processing_time"] = round(time.time() - start_time, 3)
log(f"analyze: end in {result['processing_time']}s")
return result
except Exception:
log("analyze: fatal error")
traceback.print_exc()
return {"error": "Internal error in analyze"}
def analyze_with_medsam(base_result, image, include_raw_masks=False, bboxes_json="", points_json=""):
try:
log("analyze_with_medsam: start")
if not isinstance(base_result, dict):
return base_result, None
label = str(base_result.get("chart_type_label", "")).strip().lower()
if label != "medical image" or not _medsam.is_available():
log("analyze_with_medsam: skip (non-medical or MedSAM unavailable)")
return base_result, None
pil_img = Image.open(image).convert("RGB") if isinstance(image, str) else image
if pil_img is None:
return base_result, None
img_path = image if isinstance(image, str) else None
if img_path is None:
tmp_path = "./_tmp_input_image.png"
pil_img.save(tmp_path)
img_path = tmp_path
_medsam.load_image(img_path)
# Parse prompts
parsed_bboxes = []
parsed_points = []
try:
if bboxes_json:
parsed_bboxes = json.loads(bboxes_json)
if points_json:
parsed_points = json.loads(points_json)
except Exception:
log("analyze_with_medsam: failed to parse prompts JSON")
# If no prompts provided, skip (follow original behavior)
if not parsed_bboxes and not parsed_points:
log("analyze_with_medsam: no prompts provided; skipping segmentation")
return base_result, None
segmentations = []
masks_for_overlay = []
# Run MedSAM for provided boxes
for bbox in parsed_bboxes:
if not isinstance(bbox, (list, tuple)) or len(bbox) != 4:
continue
m = _medsam.segment_with_box(bbox)
if m is None or not isinstance(m.get('mask'), np.ndarray):
continue
mask_np = m['mask'].astype(np.uint8)
seg_entry = {
"confidence": float(m.get('confidence', 1.0)),
"method": m.get("method", "medsam_box"),
"polygons": _mask_to_polygons(mask_np)
}
if include_raw_masks:
seg_entry["mask"] = mask_np.tolist()
segmentations.append(seg_entry)
masks_for_overlay.append(m)
# Run MedSAM for provided points by converting to bbox
for item in parsed_points:
try:
# Expect item like {"points": [[x,y],...]} or [ [x,y], ... ]
pts = item.get("points") if isinstance(item, dict) else item
pts_np = np.array(pts)
x_min, y_min = pts_np.min(axis=0)
x_max, y_max = pts_np.max(axis=0)
pad = 20
H, W = _medsam.current_image.shape[:2]
bbox = [max(0, x_min - pad), max(0, y_min - pad), min(W - 1, x_max + pad), min(H - 1, y_max + pad)]
m = _medsam.segment_with_box(bbox)
if m is None or not isinstance(m.get('mask'), np.ndarray):
continue
mask_np = m['mask'].astype(np.uint8)
seg_entry = {
"confidence": float(m.get('confidence', 1.0)),
"method": m.get("method", "medsam_points_box"),
"polygons": _mask_to_polygons(mask_np)
}
if include_raw_masks:
seg_entry["mask"] = mask_np.tolist()
segmentations.append(seg_entry)
masks_for_overlay.append(m)
except Exception:
continue
W, H = pil_img.size
base_result["medsam"] = {
"available": True,
"height": H,
"width": W,
"segmentations": segmentations,
"num_segments": len(segmentations)
}
log(f"analyze_with_medsam: segments={len(segmentations)}")
overlay_img = _overlay_masks_on_image(pil_img, masks_for_overlay) if masks_for_overlay else None
log("analyze_with_medsam: end")
return base_result, overlay_img
except Exception:
log("analyze_with_medsam: fatal error")
traceback.print_exc()
return base_result, None
# === Gradio UI with API enhancements ===
# Create Blocks interface with explicit API name for stable API surface
with gr.Blocks(
title="π Dense Captioning Platform"
) as demo:
gr.Markdown("# π Dense Captioning Platform")
gr.Markdown("""
**Comprehensive Chart Analysis API**
Upload a chart image to get:
- **Chart Type Classification**: Identifies the type of chart (line, bar, scatter, etc.)
- **Element Detection**: Detects chart elements like titles, axes, legends, data points
- **Data Point Segmentation**: Segments individual data points and regions
Masks will be automatically generated for medical images when supported.
**API Usage:**
```python
from gradio_client import Client, handle_file
client = Client("hanszhu/Dense-Captioning-Platform")
result = client.predict(
image=handle_file('path/to/your/chart.png'),
api_name="/predict"
)
print(result)
```
**Supported Chart Types:** Line graphs, Bar plots, Scatter plots, Pie charts, Heat maps, and 23+ more
""")
with gr.Row():
with gr.Column():
# Input
image_input = gr.Image(
type="filepath", # β
REQUIRED for gradio_client
label="Upload Chart Image",
height=400,
elem_id="image-input"
)
include_raw_masks_cb = gr.Checkbox(value=False, visible=False, elem_id="include-raw-masks")
bboxes_tb = gr.Textbox(value="", visible=False, elem_id="bboxes-json")
points_tb = gr.Textbox(value="", visible=False, elem_id="points-json")
# Analyze button (single)
analyze_btn = gr.Button(
"π Analyze",
variant="primary",
size="lg",
elem_id="analyze-btn"
)
with gr.Column():
# Output JSON
result_output = gr.JSON(
label="Analysis Results",
height=400,
elem_id="result-output"
)
# Overlay image output (populated only for medical images)
overlay_output = gr.Image(
label="MedSAM Overlay (Medical images)",
height=400,
elem_id="overlay-output"
)
# Single API endpoint for JSON
analyze_event = analyze_btn.click(
fn=analyze,
inputs=image_input,
outputs=result_output,
api_name="/predict" # β
Standard API name that gradio_client expects
)
# MedSAM step (prompt-only). If no prompts, it will skip
analyze_event.then(
fn=analyze_with_medsam,
inputs=[result_output, image_input, include_raw_masks_cb, bboxes_tb, points_tb],
outputs=[result_output, overlay_output],
api_name="/medsam"
)
# Add some examples
gr.Examples(
examples=[
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"]
],
inputs=image_input,
label="Try with this example"
)
# Launch with API-friendly settings
if __name__ == "__main__":
launch_kwargs = {
"server_name": "0.0.0.0", # Allow external connections
"server_port": 7860,
"share": False, # Set to True if you want a public link
"show_error": True, # Show detailed errors for debugging
"quiet": False, # Show startup messages
"show_api": True, # Enable API documentation
"ssr_mode": False # Disable experimental SSR in Docker env
}
# Enable queue for gradio_client compatibility
demo.queue().launch(**launch_kwargs) # β
required for gradio_client to work |