Spaces:
Sleeping
Sleeping
chore(docker): dedupe deps; restore Gradio app; move installs to Dockerfile; no runtime installs
Browse files- Dockerfile +2 -1
- app.py +846 -6
- requirements.txt +6 -2
Dockerfile
CHANGED
@@ -15,6 +15,7 @@ COPY requirements.txt /app/requirements.txt
|
|
15 |
RUN python -m pip install --upgrade pip wheel setuptools openmim \
|
16 |
&& pip install --no-cache-dir -r requirements.txt \
|
17 |
&& pip install --no-cache-dir --index-url https://download.pytorch.org/whl/cpu torch==2.1.0 torchvision==0.16.0 \
|
|
|
18 |
&& mim install "mmengine==0.10.4" \
|
19 |
&& mim install "mmcv==2.1.0" \
|
20 |
&& mim install "mmdet==3.3.0"
|
@@ -23,4 +24,4 @@ COPY . /app
|
|
23 |
|
24 |
EXPOSE 7860
|
25 |
|
26 |
-
CMD ["
|
|
|
15 |
RUN python -m pip install --upgrade pip wheel setuptools openmim \
|
16 |
&& pip install --no-cache-dir -r requirements.txt \
|
17 |
&& pip install --no-cache-dir --index-url https://download.pytorch.org/whl/cpu torch==2.1.0 torchvision==0.16.0 \
|
18 |
+
&& pip install --no-cache-dir 'git+https://github.com/facebookresearch/segment-anything.git' \
|
19 |
&& mim install "mmengine==0.10.4" \
|
20 |
&& mim install "mmcv==2.1.0" \
|
21 |
&& mim install "mmdet==3.3.0"
|
|
|
24 |
|
25 |
EXPOSE 7860
|
26 |
|
27 |
+
CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -1,8 +1,848 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
|
9 |
+
# Add custom modules to path - try multiple possible locations
|
10 |
+
possible_paths = [
|
11 |
+
"./custom_models",
|
12 |
+
"../custom_models",
|
13 |
+
"./Dense-Captioning-Platform/custom_models"
|
14 |
+
]
|
15 |
|
16 |
+
for path in possible_paths:
|
17 |
+
if os.path.exists(path):
|
18 |
+
sys.path.insert(0, os.path.abspath(path))
|
19 |
+
break
|
20 |
+
|
21 |
+
# Add mmcv to path if it exists
|
22 |
+
if os.path.exists('./mmcv'):
|
23 |
+
sys.path.insert(0, os.path.abspath('./mmcv'))
|
24 |
+
print("β
Added local mmcv to path")
|
25 |
+
|
26 |
+
# Import and register custom modules
|
27 |
+
try:
|
28 |
+
from custom_models import register
|
29 |
+
print("β
Custom modules registered successfully")
|
30 |
+
except Exception as e:
|
31 |
+
print(f"β οΈ Warning: Could not register custom modules: {e}")
|
32 |
+
|
33 |
+
# ----------------------
|
34 |
+
# Optional MedSAM integration
|
35 |
+
# ----------------------
|
36 |
+
class MedSAMIntegrator:
|
37 |
+
def __init__(self):
|
38 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
self.medsam_model = None
|
40 |
+
self.current_image = None
|
41 |
+
self.current_image_path = None
|
42 |
+
self.embedding = None
|
43 |
+
self._load_medsam_model()
|
44 |
+
|
45 |
+
def _ensure_segment_anything(self):
|
46 |
+
try:
|
47 |
+
import segment_anything # noqa: F401
|
48 |
+
return True
|
49 |
+
except Exception as e:
|
50 |
+
print(f"β segment_anything not available: {e}. Install it in Dockerfile to enable MedSAM.")
|
51 |
+
return False
|
52 |
+
|
53 |
+
def _load_medsam_model(self):
|
54 |
+
try:
|
55 |
+
# Ensure library is present
|
56 |
+
if not self._ensure_segment_anything():
|
57 |
+
print("MedSAM features disabled (segment_anything not available)")
|
58 |
+
return
|
59 |
+
|
60 |
+
from segment_anything import sam_model_registry as _reg
|
61 |
+
import torch as _torch
|
62 |
+
|
63 |
+
# Preferred local path
|
64 |
+
medsam_ckpt_path = "models/medsam_vit_b.pth"
|
65 |
+
|
66 |
+
# If not present, fetch from HF Hub using provided repo or default
|
67 |
+
if not os.path.exists(medsam_ckpt_path):
|
68 |
+
try:
|
69 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
70 |
+
repo_id = os.environ.get("HF_MEDSAM_REPO", "Aniketg6/Fine-Tuned-MedSAM")
|
71 |
+
# Try to find a .pth/.pt in the repo
|
72 |
+
print(f"π Trying to download MedSAM checkpoint from {repo_id} ...")
|
73 |
+
files = list_repo_files(repo_id)
|
74 |
+
candidate = None
|
75 |
+
for f in files:
|
76 |
+
lf = f.lower()
|
77 |
+
if lf.endswith(".pth") or lf.endswith(".pt"):
|
78 |
+
candidate = f
|
79 |
+
break
|
80 |
+
if candidate is None:
|
81 |
+
# Fallback to a common name
|
82 |
+
candidate = "medsam_vit_b.pth"
|
83 |
+
ckpt_path = hf_hub_download(repo_id=repo_id, filename=candidate, cache_dir="./models")
|
84 |
+
medsam_ckpt_path = ckpt_path
|
85 |
+
print(f"β
Downloaded MedSAM checkpoint: {medsam_ckpt_path}")
|
86 |
+
except Exception as dl_err:
|
87 |
+
print(f"β Could not fetch MedSAM checkpoint from HF Hub: {dl_err}")
|
88 |
+
print("MedSAM features disabled (no checkpoint)")
|
89 |
+
return
|
90 |
+
|
91 |
+
# Load checkpoint
|
92 |
+
checkpoint = _torch.load(medsam_ckpt_path, map_location='cpu')
|
93 |
+
self.medsam_model = _reg["vit_b"](checkpoint=None)
|
94 |
+
self.medsam_model.load_state_dict(checkpoint)
|
95 |
+
self.medsam_model.to(self.device)
|
96 |
+
self.medsam_model.eval()
|
97 |
+
print("β MedSAM model loaded successfully")
|
98 |
+
except Exception as e:
|
99 |
+
print(f"β MedSAM model not available: {e}. MedSAM features disabled.")
|
100 |
+
|
101 |
+
def is_available(self):
|
102 |
+
return self.medsam_model is not None
|
103 |
+
|
104 |
+
def load_image(self, image_path, precomputed_embedding=None):
|
105 |
+
try:
|
106 |
+
from skimage import transform, io # local import to avoid hard dep if unused
|
107 |
+
img_np = io.imread(image_path)
|
108 |
+
if len(img_np.shape) == 2:
|
109 |
+
img_3c = np.repeat(img_np[:, :, None], 3, axis=-1)
|
110 |
+
else:
|
111 |
+
img_3c = img_np
|
112 |
+
self.current_image = img_3c
|
113 |
+
self.current_image_path = image_path
|
114 |
+
if precomputed_embedding is not None:
|
115 |
+
if not self.set_precomputed_embedding(precomputed_embedding):
|
116 |
+
self.get_embeddings()
|
117 |
+
else:
|
118 |
+
self.get_embeddings()
|
119 |
+
return True
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Error loading image for MedSAM: {e}")
|
122 |
+
return False
|
123 |
+
|
124 |
+
@torch.no_grad()
|
125 |
+
def get_embeddings(self):
|
126 |
+
if self.current_image is None or self.medsam_model is None:
|
127 |
+
return None
|
128 |
+
from skimage import transform
|
129 |
+
img_1024 = transform.resize(
|
130 |
+
self.current_image, (1024, 1024), order=3, preserve_range=True, anti_aliasing=True
|
131 |
+
).astype(np.uint8)
|
132 |
+
img_1024 = (img_1024 - img_1024.min()) / np.clip(img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None)
|
133 |
+
img_1024_tensor = (
|
134 |
+
torch.tensor(img_1024).float().permute(2, 0, 1).unsqueeze(0).to(self.device)
|
135 |
+
)
|
136 |
+
self.embedding = self.medsam_model.image_encoder(img_1024_tensor)
|
137 |
+
return self.embedding
|
138 |
+
|
139 |
+
def set_precomputed_embedding(self, embedding_array):
|
140 |
+
try:
|
141 |
+
if isinstance(embedding_array, np.ndarray):
|
142 |
+
embedding_tensor = torch.tensor(embedding_array).to(self.device)
|
143 |
+
self.embedding = embedding_tensor
|
144 |
+
return True
|
145 |
+
return False
|
146 |
+
except Exception as e:
|
147 |
+
print(f"Error setting precomputed embedding: {e}")
|
148 |
+
return False
|
149 |
+
|
150 |
+
@torch.no_grad()
|
151 |
+
def medsam_inference(self, box_1024, height, width):
|
152 |
+
if self.embedding is None or self.medsam_model is None:
|
153 |
+
return None
|
154 |
+
box_torch = torch.as_tensor(box_1024, dtype=torch.float, device=self.embedding.device)
|
155 |
+
if len(box_torch.shape) == 2:
|
156 |
+
box_torch = box_torch[:, None, :]
|
157 |
+
sparse_embeddings, dense_embeddings = self.medsam_model.prompt_encoder(
|
158 |
+
points=None, boxes=box_torch, masks=None,
|
159 |
+
)
|
160 |
+
low_res_logits, _ = self.medsam_model.mask_decoder(
|
161 |
+
image_embeddings=self.embedding,
|
162 |
+
image_pe=self.medsam_model.prompt_encoder.get_dense_pe(),
|
163 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
164 |
+
dense_prompt_embeddings=dense_embeddings,
|
165 |
+
multimask_output=False,
|
166 |
+
)
|
167 |
+
low_res_pred = torch.sigmoid(low_res_logits)
|
168 |
+
low_res_pred = torch.nn.functional.interpolate(
|
169 |
+
low_res_pred, size=(height, width), mode="bilinear", align_corners=False,
|
170 |
+
)
|
171 |
+
low_res_pred = low_res_pred.squeeze().cpu().numpy()
|
172 |
+
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
|
173 |
+
return medsam_seg
|
174 |
+
|
175 |
+
def segment_with_box(self, bbox):
|
176 |
+
if self.embedding is None or self.current_image is None:
|
177 |
+
return None
|
178 |
+
try:
|
179 |
+
H, W, _ = self.current_image.shape
|
180 |
+
x1, y1, x2, y2 = bbox
|
181 |
+
x1 = max(0, min(int(x1), W - 1))
|
182 |
+
y1 = max(0, min(int(y1), H - 1))
|
183 |
+
x2 = max(0, min(int(x2), W - 1))
|
184 |
+
y2 = max(0, min(int(y2), H - 1))
|
185 |
+
if x2 <= x1:
|
186 |
+
x2 = min(x1 + 10, W - 1)
|
187 |
+
if y2 <= y1:
|
188 |
+
y2 = min(y1 + 10, H - 1)
|
189 |
+
box_np = np.array([[x1, y1, x2, y2]], dtype=float)
|
190 |
+
box_1024 = box_np / np.array([W, H, W, H]) * 1024.0
|
191 |
+
medsam_mask = self.medsam_inference(box_1024, H, W)
|
192 |
+
if medsam_mask is not None:
|
193 |
+
return {"mask": medsam_mask, "confidence": 1.0, "method": "medsam_box"}
|
194 |
+
return None
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Error in MedSAM box-based segmentation: {e}")
|
197 |
+
return None
|
198 |
+
|
199 |
+
# Single global instance
|
200 |
+
_medsam = MedSAMIntegrator()
|
201 |
+
|
202 |
+
|
203 |
+
def _extract_bboxes_from_mmdet_result(det_result):
|
204 |
+
"""Extract Nx4 xyxy bboxes from various MMDet result formats."""
|
205 |
+
boxes = []
|
206 |
+
try:
|
207 |
+
# MMDet 3.x: list of DetDataSample
|
208 |
+
if isinstance(det_result, list) and len(det_result) > 0:
|
209 |
+
sample = det_result[0]
|
210 |
+
if hasattr(sample, 'pred_instances'):
|
211 |
+
inst = sample.pred_instances
|
212 |
+
if hasattr(inst, 'bboxes'):
|
213 |
+
b = inst.bboxes
|
214 |
+
# mmengine structures may use .tensor for boxes
|
215 |
+
if hasattr(b, 'tensor'):
|
216 |
+
b = b.tensor
|
217 |
+
boxes = b.detach().cpu().numpy().tolist()
|
218 |
+
# Single DetDataSample
|
219 |
+
elif hasattr(det_result, 'pred_instances'):
|
220 |
+
inst = det_result.pred_instances
|
221 |
+
if hasattr(inst, 'bboxes'):
|
222 |
+
b = inst.bboxes
|
223 |
+
if hasattr(b, 'tensor'):
|
224 |
+
b = b.tensor
|
225 |
+
boxes = b.detach().cpu().numpy().tolist()
|
226 |
+
# MMDet 2.x: tuple of (bbox_result, segm_result)
|
227 |
+
elif isinstance(det_result, tuple) and len(det_result) >= 1:
|
228 |
+
bbox_result = det_result[0]
|
229 |
+
# bbox_result is list per class, each Nx5 [x1,y1,x2,y2,score]
|
230 |
+
if isinstance(bbox_result, (list, tuple)):
|
231 |
+
for arr in bbox_result:
|
232 |
+
try:
|
233 |
+
arr_np = np.array(arr)
|
234 |
+
if arr_np.ndim == 2 and arr_np.shape[1] >= 4:
|
235 |
+
boxes.extend(arr_np[:, :4].tolist())
|
236 |
+
except Exception:
|
237 |
+
continue
|
238 |
+
except Exception as e:
|
239 |
+
print(f"Failed to parse MMDet result for boxes: {e}")
|
240 |
+
return boxes
|
241 |
+
|
242 |
+
|
243 |
+
def _overlay_masks_on_image(image_pil, mask_list, alpha=0.4):
|
244 |
+
"""Overlay binary masks on an image with random colors."""
|
245 |
+
if image_pil is None or not mask_list:
|
246 |
+
return image_pil
|
247 |
+
img = np.array(image_pil.convert('RGB'))
|
248 |
+
overlay = img.copy()
|
249 |
+
for idx, m in enumerate(mask_list):
|
250 |
+
if m is None or 'mask' not in m or m['mask'] is None:
|
251 |
+
continue
|
252 |
+
mask = m['mask'].astype(bool)
|
253 |
+
color = np.random.RandomState(seed=idx + 1234).randint(0, 255, size=3)
|
254 |
+
overlay[mask] = (0.5 * overlay[mask] + 0.5 * color).astype(np.uint8)
|
255 |
+
blended = (alpha * overlay + (1 - alpha) * img).astype(np.uint8)
|
256 |
+
return Image.fromarray(blended)
|
257 |
+
|
258 |
+
|
259 |
+
def _mask_to_polygons(mask: np.ndarray):
|
260 |
+
"""Convert a binary mask (H,W) to a list of polygons ([[x,y], ...]) using OpenCV contours."""
|
261 |
+
try:
|
262 |
+
mask_u8 = (mask.astype(np.uint8) * 255)
|
263 |
+
contours, _ = cv2.findContours(mask_u8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
264 |
+
polygons = []
|
265 |
+
for cnt in contours:
|
266 |
+
if cnt is None or len(cnt) < 3:
|
267 |
+
continue
|
268 |
+
# Simplify contour slightly
|
269 |
+
epsilon = 0.002 * cv2.arcLength(cnt, True)
|
270 |
+
approx = cv2.approxPolyDP(cnt, epsilon, True)
|
271 |
+
poly = approx.reshape(-1, 2).tolist()
|
272 |
+
polygons.append(poly)
|
273 |
+
return polygons
|
274 |
+
except Exception as e:
|
275 |
+
print(f"_mask_to_polygons failed: {e}")
|
276 |
+
return []
|
277 |
+
|
278 |
+
|
279 |
+
def _find_largest_foreground_bbox(pil_img: Image.Image):
|
280 |
+
"""Heuristic: find largest foreground region bbox via Otsu threshold on grayscale.
|
281 |
+
Returns [x1, y1, x2, y2] or full-image bbox if none found."""
|
282 |
+
try:
|
283 |
+
img = np.array(pil_img.convert('RGB'))
|
284 |
+
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
285 |
+
# Otsu threshold (invert if needed by checking mean)
|
286 |
+
_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
287 |
+
# Assume foreground is darker; invert if threshold yields background as white majority
|
288 |
+
if th.mean() > 127:
|
289 |
+
th = 255 - th
|
290 |
+
# Morph close to connect regions
|
291 |
+
kernel = np.ones((5, 5), np.uint8)
|
292 |
+
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
|
293 |
+
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
294 |
+
if not contours:
|
295 |
+
W, H = pil_img.size
|
296 |
+
return [0, 0, W - 1, H - 1]
|
297 |
+
# Largest contour by area
|
298 |
+
cnt = max(contours, key=cv2.contourArea)
|
299 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
300 |
+
# Pad a little
|
301 |
+
pad = int(0.02 * max(w, h))
|
302 |
+
x1 = max(0, x - pad)
|
303 |
+
y1 = max(0, y - pad)
|
304 |
+
x2 = min(img.shape[1] - 1, x + w + pad)
|
305 |
+
y2 = min(img.shape[0] - 1, y + h + pad)
|
306 |
+
return [x1, y1, x2, y2]
|
307 |
+
except Exception as e:
|
308 |
+
print(f"_find_largest_foreground_bbox failed: {e}")
|
309 |
+
W, H = pil_img.size
|
310 |
+
return [0, 0, W - 1, H - 1]
|
311 |
+
|
312 |
+
|
313 |
+
def _find_topk_foreground_bboxes(pil_img: Image.Image, max_regions: int = 20, min_area: int = 100):
|
314 |
+
"""Find top-K foreground bboxes via Otsu threshold + morphology. Returns list of [x1,y1,x2,y2]."""
|
315 |
+
try:
|
316 |
+
img = np.array(pil_img.convert('RGB'))
|
317 |
+
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
318 |
+
_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
319 |
+
if th.mean() > 127:
|
320 |
+
th = 255 - th
|
321 |
+
kernel = np.ones((3, 3), np.uint8)
|
322 |
+
th = cv2.morphologyEx(th, cv2.MORPH_OPEN, kernel, iterations=1)
|
323 |
+
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
|
324 |
+
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
325 |
+
if not contours:
|
326 |
+
return []
|
327 |
+
contours = sorted(contours, key=cv2.contourArea, reverse=True)
|
328 |
+
bboxes = []
|
329 |
+
H, W = img.shape[:2]
|
330 |
+
for cnt in contours:
|
331 |
+
area = cv2.contourArea(cnt)
|
332 |
+
if area < min_area:
|
333 |
+
continue
|
334 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
335 |
+
# Filter very thin shapes
|
336 |
+
if w < 5 or h < 5:
|
337 |
+
continue
|
338 |
+
pad = int(0.01 * max(w, h))
|
339 |
+
x1 = max(0, x - pad)
|
340 |
+
y1 = max(0, y - pad)
|
341 |
+
x2 = min(W - 1, x + w + pad)
|
342 |
+
y2 = min(H - 1, y + h + pad)
|
343 |
+
bboxes.append([x1, y1, x2, y2])
|
344 |
+
if len(bboxes) >= max_regions:
|
345 |
+
break
|
346 |
+
return bboxes
|
347 |
+
except Exception as e:
|
348 |
+
print(f"_find_topk_foreground_bboxes failed: {e}")
|
349 |
+
return []
|
350 |
+
|
351 |
+
# Try to import mmdet for inference
|
352 |
+
try:
|
353 |
+
from mmdet.apis import init_detector, inference_detector
|
354 |
+
MM_DET_AVAILABLE = True
|
355 |
+
print("β
MMDetection available for inference")
|
356 |
+
except ImportError as e:
|
357 |
+
print(f"β οΈ MMDetection import failed: {e}")
|
358 |
+
print("β MMDetection not available - install in Dockerfile")
|
359 |
+
MM_DET_AVAILABLE = False
|
360 |
+
|
361 |
+
# === Chart Type Classification (DocFigure) ===
|
362 |
+
print("π Loading Chart Classification Model...")
|
363 |
+
|
364 |
+
# Chart type labels from DocFigure dataset (28 classes)
|
365 |
+
CHART_TYPE_LABELS = [
|
366 |
+
'Line graph', 'Natural image', 'Table', '3D object', 'Bar plot', 'Scatter plot',
|
367 |
+
'Medical image', 'Sketch', 'Geographic map', 'Flow chart', 'Heat map', 'Mask',
|
368 |
+
'Block diagram', 'Venn diagram', 'Confusion matrix', 'Histogram', 'Box plot',
|
369 |
+
'Vector plot', 'Pie chart', 'Surface plot', 'Algorithm', 'Contour plot',
|
370 |
+
'Tree diagram', 'Bubble chart', 'Polar plot', 'Area chart', 'Pareto chart', 'Radar chart'
|
371 |
+
]
|
372 |
+
|
373 |
+
try:
|
374 |
+
# Load the chart_type.pth model file from Hugging Face Hub
|
375 |
+
from huggingface_hub import hf_hub_download
|
376 |
+
from torchvision import transforms
|
377 |
+
|
378 |
+
print("π Downloading chart_type.pth from Hugging Face Hub...")
|
379 |
+
chart_type_path = hf_hub_download(
|
380 |
+
repo_id="hanszhu/ChartTypeNet-DocFigure",
|
381 |
+
filename="chart_type.pth",
|
382 |
+
cache_dir="./models"
|
383 |
+
)
|
384 |
+
print(f"β
Downloaded to: {chart_type_path}")
|
385 |
+
|
386 |
+
# Load the PyTorch model
|
387 |
+
loaded_data = torch.load(chart_type_path, map_location='cpu')
|
388 |
+
|
389 |
+
# Check if it's a state dict or a complete model
|
390 |
+
if isinstance(loaded_data, dict):
|
391 |
+
# Check if it's a checkpoint with model_state_dict
|
392 |
+
if "model_state_dict" in loaded_data:
|
393 |
+
print("π Loading checkpoint, extracting model_state_dict...")
|
394 |
+
state_dict = loaded_data["model_state_dict"]
|
395 |
+
else:
|
396 |
+
# It's a direct state dict
|
397 |
+
print("π Loading state dict, creating model architecture...")
|
398 |
+
state_dict = loaded_data
|
399 |
+
|
400 |
+
# Strip "backbone." prefix from state dict keys if present
|
401 |
+
cleaned_state_dict = {}
|
402 |
+
for key, value in state_dict.items():
|
403 |
+
if key.startswith("backbone."):
|
404 |
+
# Remove "backbone." prefix
|
405 |
+
new_key = key[9:]
|
406 |
+
cleaned_state_dict[new_key] = value
|
407 |
+
else:
|
408 |
+
cleaned_state_dict[key] = value
|
409 |
+
|
410 |
+
print(f"π Cleaned state dict: {len(cleaned_state_dict)} keys")
|
411 |
+
|
412 |
+
# Create the model architecture
|
413 |
+
from torchvision.models import resnet50
|
414 |
+
chart_type_model = resnet50(pretrained=False)
|
415 |
+
|
416 |
+
# Create the correct classifier structure to match the state dict
|
417 |
+
import torch.nn as nn
|
418 |
+
in_features = chart_type_model.fc.in_features
|
419 |
+
dropout = nn.Dropout(0.5)
|
420 |
+
|
421 |
+
chart_type_model.fc = nn.Sequential(
|
422 |
+
nn.Linear(in_features, 512),
|
423 |
+
nn.ReLU(inplace=True),
|
424 |
+
dropout,
|
425 |
+
nn.Linear(512, 28)
|
426 |
+
)
|
427 |
+
|
428 |
+
# Load the cleaned state dict
|
429 |
+
chart_type_model.load_state_dict(cleaned_state_dict)
|
430 |
+
else:
|
431 |
+
# It's a complete model
|
432 |
+
chart_type_model = loaded_data
|
433 |
+
|
434 |
+
chart_type_model.eval()
|
435 |
+
|
436 |
+
# Create a simple processor for the model
|
437 |
+
chart_type_processor = transforms.Compose([
|
438 |
+
transforms.Resize((224, 224)),
|
439 |
+
transforms.ToTensor(),
|
440 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
441 |
+
])
|
442 |
+
|
443 |
+
CHART_TYPE_AVAILABLE = True
|
444 |
+
print("β
Chart classification model loaded")
|
445 |
+
except Exception as e:
|
446 |
+
print(f"β οΈ Failed to load chart classification model: {e}")
|
447 |
+
import traceback
|
448 |
+
print("π Full traceback:")
|
449 |
+
traceback.print_exc()
|
450 |
+
CHART_TYPE_AVAILABLE = False
|
451 |
+
|
452 |
+
# === Chart Element Detection (Cascade R-CNN) ===
|
453 |
+
element_model = None
|
454 |
+
datapoint_model = None
|
455 |
+
|
456 |
+
print(f"π MM_DET_AVAILABLE: {MM_DET_AVAILABLE}")
|
457 |
+
|
458 |
+
if MM_DET_AVAILABLE:
|
459 |
+
# Check if config files exist
|
460 |
+
element_config = "models/chart_elementnet_swin.py"
|
461 |
+
point_config = "models/chart_pointnet_swin.py"
|
462 |
+
|
463 |
+
print(f"π Checking config files...")
|
464 |
+
print(f"π Element config exists: {os.path.exists(element_config)}")
|
465 |
+
print(f"π Point config exists: {os.path.exists(point_config)}")
|
466 |
+
print(f"π Current working directory: {os.getcwd()}")
|
467 |
+
print(f"π Files in models directory: {os.listdir('models') if os.path.exists('models') else 'models directory not found'}")
|
468 |
+
|
469 |
+
try:
|
470 |
+
print("π Loading ChartElementNet-MultiClass (Cascade R-CNN)...")
|
471 |
+
print(f"π Config path: {element_config}")
|
472 |
+
print(f"π Weights path: hanszhu/ChartElementNet-MultiClass")
|
473 |
+
print(f"π About to call init_detector...")
|
474 |
+
|
475 |
+
# Download model from Hugging Face Hub
|
476 |
+
from huggingface_hub import hf_hub_download
|
477 |
+
print("π Downloading ChartElementNet weights from Hugging Face Hub...")
|
478 |
+
element_checkpoint = hf_hub_download(
|
479 |
+
repo_id="hanszhu/ChartElementNet-MultiClass",
|
480 |
+
filename="chart_label+.pth",
|
481 |
+
cache_dir="./models"
|
482 |
+
)
|
483 |
+
print(f"β
Downloaded to: {element_checkpoint}")
|
484 |
+
|
485 |
+
# Use local config with downloaded weights
|
486 |
+
element_model = init_detector(element_config, element_checkpoint, device="cpu")
|
487 |
+
print("β
ChartElementNet loaded successfully")
|
488 |
+
except Exception as e:
|
489 |
+
print(f"β Failed to load ChartElementNet: {e}")
|
490 |
+
print(f"π Error type: {type(e).__name__}")
|
491 |
+
print(f"π Error details: {str(e)}")
|
492 |
+
import traceback
|
493 |
+
print("π Full traceback:")
|
494 |
+
traceback.print_exc()
|
495 |
+
|
496 |
+
try:
|
497 |
+
print("π Loading ChartPointNet-InstanceSeg (Mask R-CNN)...")
|
498 |
+
print(f"π Config path: {point_config}")
|
499 |
+
print(f"π Weights path: hanszhu/ChartPointNet-InstanceSeg")
|
500 |
+
print(f"π About to call init_detector...")
|
501 |
+
|
502 |
+
# Download model from Hugging Face Hub
|
503 |
+
print("π Downloading ChartPointNet weights from Hugging Face Hub...")
|
504 |
+
datapoint_checkpoint = hf_hub_download(
|
505 |
+
repo_id="hanszhu/ChartPointNet-InstanceSeg",
|
506 |
+
filename="chart_datapoint.pth",
|
507 |
+
cache_dir="./models"
|
508 |
+
)
|
509 |
+
print(f"β
Downloaded to: {datapoint_checkpoint}")
|
510 |
+
|
511 |
+
# Use local config with downloaded weights
|
512 |
+
datapoint_model = init_detector(point_config, datapoint_checkpoint, device="cpu")
|
513 |
+
print("β
ChartPointNet loaded successfully")
|
514 |
+
except Exception as e:
|
515 |
+
print(f"β Failed to load ChartPointNet: {e}")
|
516 |
+
print(f"π Error type: {type(e).__name__}")
|
517 |
+
print(f"π Error details: {str(e)}")
|
518 |
+
import traceback
|
519 |
+
print("π Full traceback:")
|
520 |
+
traceback.print_exc()
|
521 |
+
else:
|
522 |
+
print("β MMDetection not available - cannot load custom models")
|
523 |
+
print(f"π MM_DET_AVAILABLE was False")
|
524 |
+
|
525 |
+
print(f"π Final model status:")
|
526 |
+
print(f"π element_model: {element_model is not None}")
|
527 |
+
print(f"π datapoint_model: {datapoint_model is not None}")
|
528 |
+
|
529 |
+
# === Main prediction function ===
|
530 |
+
def analyze(image):
|
531 |
+
"""
|
532 |
+
Analyze a chart image and return comprehensive results.
|
533 |
+
|
534 |
+
Args:
|
535 |
+
image: Input chart image (filepath string or PIL.Image)
|
536 |
+
|
537 |
+
Returns:
|
538 |
+
dict: Analysis results containing:
|
539 |
+
- chart_type_id (int): Numeric chart type identifier (0-27)
|
540 |
+
- chart_type_label (str): Human-readable chart type name
|
541 |
+
- element_result (str): Detected chart elements (titles, axes, legends, etc.)
|
542 |
+
- datapoint_result (str): Segmented data points and regions
|
543 |
+
- status (str): Processing status message
|
544 |
+
- processing_time (float): Time taken for analysis in seconds
|
545 |
+
"""
|
546 |
+
import time
|
547 |
+
from PIL import Image
|
548 |
+
|
549 |
+
start_time = time.time()
|
550 |
+
|
551 |
+
# Handle filepath input (convert to PIL Image)
|
552 |
+
if isinstance(image, str):
|
553 |
+
# It's a filepath, load the image
|
554 |
+
image = Image.open(image).convert("RGB")
|
555 |
+
elif image is None:
|
556 |
+
return {"error": "No image provided"}
|
557 |
+
|
558 |
+
# Ensure we have a PIL Image
|
559 |
+
if not isinstance(image, Image.Image):
|
560 |
+
return {"error": "Invalid image format"}
|
561 |
+
|
562 |
+
result = {
|
563 |
+
"chart_type_id": "Model not available",
|
564 |
+
"chart_type_label": "Model not available",
|
565 |
+
"element_result": "MMDetection models not available",
|
566 |
+
"datapoint_result": "MMDetection models not available",
|
567 |
+
"status": "Basic chart classification only",
|
568 |
+
"processing_time": 0.0,
|
569 |
+
"medsam": {"available": False}
|
570 |
+
}
|
571 |
+
|
572 |
+
# Chart Type Classification
|
573 |
+
if CHART_TYPE_AVAILABLE:
|
574 |
+
try:
|
575 |
+
# Preprocess image for PyTorch model
|
576 |
+
processed_image = chart_type_processor(image).unsqueeze(0) # Add batch dimension
|
577 |
+
|
578 |
+
# Get prediction
|
579 |
+
with torch.no_grad():
|
580 |
+
outputs = chart_type_model(processed_image)
|
581 |
+
# Handle different output formats
|
582 |
+
if isinstance(outputs, torch.Tensor):
|
583 |
+
logits = outputs
|
584 |
+
elif hasattr(outputs, 'logits'):
|
585 |
+
logits = outputs.logits
|
586 |
+
else:
|
587 |
+
logits = outputs
|
588 |
+
|
589 |
+
predicted_class = logits.argmax(dim=-1).item()
|
590 |
+
|
591 |
+
result["chart_type_id"] = predicted_class
|
592 |
+
result["chart_type_label"] = CHART_TYPE_LABELS[predicted_class] if 0 <= predicted_class < len(CHART_TYPE_LABELS) else f"Unknown ({predicted_class})"
|
593 |
+
result["status"] = "Chart classification completed"
|
594 |
+
|
595 |
+
except Exception as e:
|
596 |
+
result["chart_type_id"] = f"Error: {str(e)}"
|
597 |
+
result["chart_type_label"] = f"Error: {str(e)}"
|
598 |
+
result["status"] = "Error in chart classification"
|
599 |
+
|
600 |
+
# Chart Element Detection (Cascade R-CNN)
|
601 |
+
if element_model is not None:
|
602 |
+
try:
|
603 |
+
# Convert PIL image to numpy array for MMDetection
|
604 |
+
np_img = np.array(image.convert("RGB"))[:, :, ::-1] # PIL β BGR
|
605 |
+
|
606 |
+
element_result = inference_detector(element_model, np_img)
|
607 |
+
|
608 |
+
# Convert result to more API-friendly format
|
609 |
+
if isinstance(element_result, tuple):
|
610 |
+
bbox_result, segm_result = element_result
|
611 |
+
element_data = {
|
612 |
+
"bboxes": bbox_result.tolist() if hasattr(bbox_result, 'tolist') else str(bbox_result),
|
613 |
+
"segments": segm_result.tolist() if hasattr(segm_result, 'tolist') else str(segm_result)
|
614 |
+
}
|
615 |
+
else:
|
616 |
+
element_data = str(element_result)
|
617 |
+
|
618 |
+
result["element_result"] = element_data
|
619 |
+
result["status"] = "Chart classification + element detection completed"
|
620 |
+
except Exception as e:
|
621 |
+
result["element_result"] = f"Error: {str(e)}"
|
622 |
+
|
623 |
+
# Chart Data Point Segmentation (Mask R-CNN)
|
624 |
+
if datapoint_model is not None:
|
625 |
+
try:
|
626 |
+
# Convert PIL image to numpy array for MMDetection
|
627 |
+
np_img = np.array(image.convert("RGB"))[:, :, ::-1] # PIL β BGR
|
628 |
+
|
629 |
+
datapoint_result = inference_detector(datapoint_model, np_img)
|
630 |
+
|
631 |
+
# Convert result to more API-friendly format
|
632 |
+
if isinstance(datapoint_result, tuple):
|
633 |
+
bbox_result, segm_result = datapoint_result
|
634 |
+
datapoint_data = {
|
635 |
+
"bboxes": bbox_result.tolist() if hasattr(bbox_result, 'tolist') else str(bbox_result),
|
636 |
+
"segments": segm_result.tolist() if hasattr(segm_result, 'tolist') else str(segm_result)
|
637 |
+
}
|
638 |
+
else:
|
639 |
+
datapoint_data = str(datapoint_result)
|
640 |
+
|
641 |
+
result["datapoint_result"] = datapoint_data
|
642 |
+
result["status"] = "Full analysis completed"
|
643 |
+
except Exception as e:
|
644 |
+
result["datapoint_result"] = f"Error: {str(e)}"
|
645 |
+
|
646 |
+
# If predicted as medical image and MedSAM is available, include mask data (polygons)
|
647 |
+
try:
|
648 |
+
label_lower = str(result.get("chart_type_label", "")).strip().lower()
|
649 |
+
if label_lower == "medical image":
|
650 |
+
if _medsam.is_available():
|
651 |
+
# Indicate availability; masks are generated in then-chain
|
652 |
+
result["medsam"] = {"available": True}
|
653 |
+
else:
|
654 |
+
# Not available; include reason
|
655 |
+
result["medsam"] = {"available": False, "reason": "segment_anything or checkpoint missing"}
|
656 |
+
except Exception as e:
|
657 |
+
print(f"MedSAM JSON augmentation failed: {e}")
|
658 |
+
|
659 |
+
result["processing_time"] = round(time.time() - start_time, 3)
|
660 |
+
return result
|
661 |
+
|
662 |
+
|
663 |
+
def analyze_with_medsam(base_result, image):
|
664 |
+
"""Auto-generate segmentations for medical images using SAM ViT-H if available,
|
665 |
+
otherwise fallback to MedSAM over top-K foreground boxes. Returns updated JSON and overlay image."""
|
666 |
+
try:
|
667 |
+
if not isinstance(base_result, dict):
|
668 |
+
return base_result, None
|
669 |
+
label = str(base_result.get("chart_type_label", "")).strip().lower()
|
670 |
+
if label != "medical image" or not _medsam.is_available():
|
671 |
+
return base_result, None
|
672 |
+
|
673 |
+
pil_img = Image.open(image).convert("RGB") if isinstance(image, str) else image
|
674 |
+
if pil_img is None:
|
675 |
+
return base_result, None
|
676 |
+
|
677 |
+
# Prepare embedding
|
678 |
+
img_path = image if isinstance(image, str) else None
|
679 |
+
if img_path is None:
|
680 |
+
tmp_path = "./_tmp_input_image.png"
|
681 |
+
pil_img.save(tmp_path)
|
682 |
+
img_path = tmp_path
|
683 |
+
_medsam.load_image(img_path)
|
684 |
+
|
685 |
+
segmentations = []
|
686 |
+
masks_for_overlay = []
|
687 |
+
|
688 |
+
# AUTO segmentation path
|
689 |
+
try:
|
690 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
691 |
+
import cv2 as _cv2
|
692 |
+
# If ViT-H checkpoint present, use SAM automatic mask generator (download if missing)
|
693 |
+
vit_h_ckpt = "models/sam_vit_h_4b8939.pth"
|
694 |
+
if not os.path.exists(vit_h_ckpt):
|
695 |
+
try:
|
696 |
+
from huggingface_hub import hf_hub_download
|
697 |
+
vit_h_ckpt = hf_hub_download(
|
698 |
+
repo_id="Aniketg6/SAM",
|
699 |
+
filename="sam_vit_h_4b8939.pth",
|
700 |
+
cache_dir="./models"
|
701 |
+
)
|
702 |
+
print(f"β
Downloaded SAM ViT-H checkpoint to: {vit_h_ckpt}")
|
703 |
+
except Exception as dlh:
|
704 |
+
print(f"β Failed to download SAM ViT-H checkpoint: {dlh}")
|
705 |
+
if os.path.exists(vit_h_ckpt):
|
706 |
+
img_bgr = _cv2.imread(img_path)
|
707 |
+
sam = sam_model_registry["vit_h"](checkpoint=vit_h_ckpt)
|
708 |
+
mask_generator = SamAutomaticMaskGenerator(sam)
|
709 |
+
masks = mask_generator.generate(img_bgr)
|
710 |
+
for m in masks:
|
711 |
+
seg = m.get('segmentation', None)
|
712 |
+
if seg is None:
|
713 |
+
continue
|
714 |
+
seg_u8 = seg.astype(np.uint8)
|
715 |
+
segmentations.append({
|
716 |
+
"mask": seg_u8.tolist(),
|
717 |
+
"confidence": float(m.get('stability_score', 1.0)),
|
718 |
+
"method": "sam_auto"
|
719 |
+
})
|
720 |
+
masks_for_overlay.append({"mask": seg_u8})
|
721 |
+
else:
|
722 |
+
# Fallback: derive candidate boxes and run MedSAM per box
|
723 |
+
cand_bboxes = _find_topk_foreground_bboxes(pil_img, max_regions=20, min_area=200)
|
724 |
+
for bbox in cand_bboxes:
|
725 |
+
m = _medsam.segment_with_box(bbox)
|
726 |
+
if m is None or not isinstance(m.get('mask'), np.ndarray):
|
727 |
+
continue
|
728 |
+
segmentations.append({
|
729 |
+
"mask": m['mask'].astype(np.uint8).tolist(),
|
730 |
+
"confidence": float(m.get('confidence', 1.0)),
|
731 |
+
"method": m.get("method", "medsam_box_auto")
|
732 |
+
})
|
733 |
+
masks_for_overlay.append(m)
|
734 |
+
except Exception as auto_e:
|
735 |
+
print(f"Automatic MedSAM segmentation failed: {auto_e}")
|
736 |
+
|
737 |
+
W, H = pil_img.size
|
738 |
+
base_result["medsam"] = {
|
739 |
+
"available": True,
|
740 |
+
"height": H,
|
741 |
+
"width": W,
|
742 |
+
"segmentations": segmentations,
|
743 |
+
"num_segments": len(segmentations)
|
744 |
+
}
|
745 |
+
|
746 |
+
overlay_img = _overlay_masks_on_image(pil_img, masks_for_overlay) if masks_for_overlay else None
|
747 |
+
return base_result, overlay_img
|
748 |
+
except Exception as e:
|
749 |
+
print(f"analyze_with_medsam failed: {e}")
|
750 |
+
return base_result, None
|
751 |
+
|
752 |
+
# === Gradio UI with API enhancements ===
|
753 |
+
# Create Blocks interface with explicit API name for stable API surface
|
754 |
+
with gr.Blocks(
|
755 |
+
title="π Dense Captioning Platform"
|
756 |
+
) as demo:
|
757 |
+
|
758 |
+
gr.Markdown("# π Dense Captioning Platform")
|
759 |
+
gr.Markdown("""
|
760 |
+
**Comprehensive Chart Analysis API**
|
761 |
+
|
762 |
+
Upload a chart image to get:
|
763 |
+
- **Chart Type Classification**: Identifies the type of chart (line, bar, scatter, etc.)
|
764 |
+
- **Element Detection**: Detects chart elements like titles, axes, legends, data points
|
765 |
+
- **Data Point Segmentation**: Segments individual data points and regions
|
766 |
+
|
767 |
+
Masks will be automatically generated for medical images when supported.
|
768 |
+
|
769 |
+
**API Usage:**
|
770 |
+
```python
|
771 |
+
from gradio_client import Client, handle_file
|
772 |
+
|
773 |
+
client = Client("hanszhu/Dense-Captioning-Platform")
|
774 |
+
result = client.predict(
|
775 |
+
image=handle_file('path/to/your/chart.png'),
|
776 |
+
api_name="/predict"
|
777 |
+
)
|
778 |
+
print(result)
|
779 |
+
```
|
780 |
+
|
781 |
+
**Supported Chart Types:** Line graphs, Bar plots, Scatter plots, Pie charts, Heat maps, and 23+ more
|
782 |
+
""")
|
783 |
+
|
784 |
+
with gr.Row():
|
785 |
+
with gr.Column():
|
786 |
+
# Input
|
787 |
+
image_input = gr.Image(
|
788 |
+
type="filepath", # β
REQUIRED for gradio_client
|
789 |
+
label="Upload Chart Image",
|
790 |
+
height=400
|
791 |
+
)
|
792 |
+
|
793 |
+
# Analyze button (single)
|
794 |
+
analyze_btn = gr.Button(
|
795 |
+
"π Analyze",
|
796 |
+
variant="primary",
|
797 |
+
size="lg"
|
798 |
+
)
|
799 |
+
|
800 |
+
with gr.Column():
|
801 |
+
# Output JSON
|
802 |
+
result_output = gr.JSON(
|
803 |
+
label="Analysis Results",
|
804 |
+
height=400
|
805 |
+
)
|
806 |
+
# Overlay image output (populated only for medical images)
|
807 |
+
overlay_output = gr.Image(
|
808 |
+
label="MedSAM Overlay (Medical images)",
|
809 |
+
height=400
|
810 |
+
)
|
811 |
+
|
812 |
+
# Single API endpoint for JSON
|
813 |
+
analyze_event = analyze_btn.click(
|
814 |
+
fn=analyze,
|
815 |
+
inputs=image_input,
|
816 |
+
outputs=result_output,
|
817 |
+
api_name="/predict" # β
Standard API name that gradio_client expects
|
818 |
+
)
|
819 |
+
|
820 |
+
# Automatic overlay generation step for medical images
|
821 |
+
analyze_event.then(
|
822 |
+
fn=analyze_with_medsam,
|
823 |
+
inputs=[result_output, image_input],
|
824 |
+
outputs=[result_output, overlay_output],
|
825 |
+
)
|
826 |
+
|
827 |
+
# Add some examples
|
828 |
+
gr.Examples(
|
829 |
+
examples=[
|
830 |
+
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"]
|
831 |
+
],
|
832 |
+
inputs=image_input,
|
833 |
+
label="Try with this example"
|
834 |
+
)
|
835 |
+
|
836 |
+
# Launch with API-friendly settings
|
837 |
+
if __name__ == "__main__":
|
838 |
+
launch_kwargs = {
|
839 |
+
"server_name": "0.0.0.0", # Allow external connections
|
840 |
+
"server_port": 7860,
|
841 |
+
"share": False, # Set to True if you want a public link
|
842 |
+
"show_error": True, # Show detailed errors for debugging
|
843 |
+
"quiet": False, # Show startup messages
|
844 |
+
"show_api": True # Enable API documentation
|
845 |
+
}
|
846 |
+
|
847 |
+
# Enable queue for gradio_client compatibility
|
848 |
+
demo.queue().launch(**launch_kwargs) # β
required for gradio_client to work
|
requirements.txt
CHANGED
@@ -1,2 +1,6 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.39.0
|
2 |
+
huggingface-hub>=0.23.0
|
3 |
+
numpy>=1.24.0
|
4 |
+
opencv-python>=4.8.0
|
5 |
+
Pillow>=9.0.0
|
6 |
+
scikit-image>=0.21.0
|