hardiktiwari's picture
Upload 244 files
33d4721 verified
import os
from dataclasses import dataclass
import albumentations as A
import torch
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from transformers.image_transforms import center_to_corners_format
from autotrain.trainers.object_detection.dataset import ObjectDetectionDataset
VALID_METRICS = (
"eval_loss",
"eval_map",
"eval_map_50",
"eval_map_75",
"eval_map_small",
"eval_map_medium",
"eval_map_large",
"eval_mar_1",
"eval_mar_10",
"eval_mar_100",
"eval_mar_small",
"eval_mar_medium",
"eval_mar_large",
)
MODEL_CARD = """
---
library_name: transformers
tags:
- autotrain
- object-detection
- vision{base_model}
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace{dataset_tag}
---
# Model Trained Using AutoTrain
- Problem type: Object Detection
## Validation Metrics
{validation_metrics}
"""
def collate_fn(batch):
"""
Collates a batch of data for object detection training.
Args:
batch (list): A list of dictionaries, where each dictionary contains
'pixel_values', 'labels', and optionally 'pixel_mask'.
Returns:
dict: A dictionary with the following keys:
- 'pixel_values' (torch.Tensor): A tensor containing stacked pixel values from the batch.
- 'labels' (list): A list of labels from the batch.
- 'pixel_mask' (torch.Tensor, optional): A tensor containing stacked pixel masks from the batch,
if 'pixel_mask' is present in the input batch.
"""
data = {}
data["pixel_values"] = torch.stack([x["pixel_values"] for x in batch])
data["labels"] = [x["labels"] for x in batch]
if "pixel_mask" in batch[0]:
data["pixel_mask"] = torch.stack([x["pixel_mask"] for x in batch])
return data
def process_data(train_data, valid_data, image_processor, config):
"""
Processes training and validation data for object detection.
Args:
train_data (list): List of training data samples.
valid_data (list or None): List of validation data samples. If None, only training data is processed.
image_processor (object): An image processor object that contains image processing configurations.
config (dict): Configuration dictionary containing various settings for data processing.
Returns:
tuple: A tuple containing processed training data and validation data (if provided). If validation data is not provided, the second element of the tuple is None.
"""
max_size = image_processor.size["longest_edge"]
basic_transforms = [
A.LongestMaxSize(max_size=max_size),
A.PadIfNeeded(max_size, max_size, border_mode=0, value=(128, 128, 128), position="top_left"),
]
train_transforms = A.Compose(
[
A.Compose(
[
A.SmallestMaxSize(max_size=max_size, p=1.0),
A.RandomSizedBBoxSafeCrop(height=max_size, width=max_size, p=1.0),
],
p=0.2,
),
A.OneOf(
[
A.Blur(blur_limit=7, p=0.5),
A.MotionBlur(blur_limit=7, p=0.5),
A.Defocus(radius=(1, 5), alias_blur=(0.1, 0.25), p=0.1),
],
p=0.1,
),
A.Perspective(p=0.1),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
A.HueSaturationValue(p=0.1),
*basic_transforms,
],
bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True, min_area=25),
)
val_transforms = A.Compose(
basic_transforms,
bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True),
)
train_data = ObjectDetectionDataset(train_data, train_transforms, image_processor, config)
if valid_data is not None:
valid_data = ObjectDetectionDataset(valid_data, val_transforms, image_processor, config)
return train_data, valid_data
return train_data, None
def convert_bbox_yolo_to_pascal(boxes, image_size):
"""
Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1]
to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates.
Args:
boxes (torch.Tensor): Bounding boxes in YOLO format
image_size (Tuple[int, int]): Image size in format (height, width)
Returns:
torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)
"""
# convert center to corners format
boxes = center_to_corners_format(boxes)
# convert to absolute coordinates
height, width = image_size
boxes = boxes * torch.tensor([[width, height, width, height]])
return boxes
@torch.no_grad()
def object_detection_metrics(evaluation_results, image_processor, threshold=0.0, id2label=None):
"""
Compute mean average mAP, mAR and their variants for the object detection task.
Args:
evaluation_results (EvalPrediction): Predictions and targets from evaluation.
threshold (float, optional): Threshold to filter predicted boxes by confidence. Defaults to 0.0.
id2label (Optional[dict], optional): Mapping from class id to class name. Defaults to None.
Returns:
Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>}
"""
@dataclass
class ModelOutput:
logits: torch.Tensor
pred_boxes: torch.Tensor
predictions, targets = evaluation_results.predictions, evaluation_results.label_ids
# For metric computation we need to provide:
# - targets in a form of list of dictionaries with keys "boxes", "labels"
# - predictions in a form of list of dictionaries with keys "boxes", "scores", "labels"
image_sizes = []
post_processed_targets = []
post_processed_predictions = []
# Collect targets in the required format for metric computation
for batch in targets:
# collect image sizes, we will need them for predictions post processing
batch_image_sizes = torch.tensor([x["orig_size"] for x in batch])
image_sizes.append(batch_image_sizes)
# collect targets in the required format for metric computation
# boxes were converted to YOLO format needed for model training
# here we will convert them to Pascal VOC format (x_min, y_min, x_max, y_max)
for image_target in batch:
boxes = torch.tensor(image_target["boxes"])
boxes = convert_bbox_yolo_to_pascal(boxes, image_target["orig_size"])
labels = torch.tensor(image_target["class_labels"])
post_processed_targets.append({"boxes": boxes, "labels": labels})
# Collect predictions in the required format for metric computation,
# model produce boxes in YOLO format, then image_processor convert them to Pascal VOC format
for batch, target_sizes in zip(predictions, image_sizes):
batch_logits, batch_boxes = batch[1], batch[2]
output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))
post_processed_output = image_processor.post_process_object_detection(
output, threshold=threshold, target_sizes=target_sizes
)
post_processed_predictions.extend(post_processed_output)
# Compute metrics
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
metric.update(post_processed_predictions, post_processed_targets)
metrics = metric.compute()
# Replace list of per class metrics with separate metric for each class
classes = metrics.pop("classes")
try:
len(classes)
calc_map_per_class = True
except TypeError:
calc_map_per_class = False
if calc_map_per_class:
map_per_class = metrics.pop("map_per_class")
mar_100_per_class = metrics.pop("mar_100_per_class")
for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
class_name = id2label[class_id.item()] if id2label is not None else class_id.item()
metrics[f"map_{class_name}"] = class_map
metrics[f"mar_100_{class_name}"] = class_mar
metrics = {k: round(v.item(), 4) for k, v in metrics.items()}
return metrics
def create_model_card(config, trainer):
"""
Generates a model card string based on the provided configuration and trainer.
Args:
config (object): Configuration object containing the following attributes:
- valid_split (optional): Validation split information.
- data_path (str): Path to the dataset.
- project_name (str): Name of the project.
- model (str): Path or identifier of the model.
trainer (object): Trainer object with an `evaluate` method that returns evaluation metrics.
Returns:
str: A formatted model card string containing dataset information, validation metrics, and base model details.
"""
if config.valid_split is not None:
eval_scores = trainer.evaluate()
eval_scores = [f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in VALID_METRICS]
eval_scores = "\n\n".join(eval_scores)
else:
eval_scores = "No validation metrics available"
if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path):
dataset_tag = ""
else:
dataset_tag = f"\ndatasets:\n- {config.data_path}"
if os.path.isdir(config.model):
base_model = ""
else:
base_model = f"\nbase_model: {config.model}"
model_card = MODEL_CARD.format(
dataset_tag=dataset_tag,
validation_metrics=eval_scores,
base_model=base_model,
)
return model_card