hardiktiwari's picture
Upload 244 files
33d4721 verified
import argparse
import json
import os
from functools import partial
import joblib
import numpy as np
import optuna
import pandas as pd
from datasets import load_dataset, load_from_disk
from huggingface_hub import HfApi
from sklearn import pipeline, preprocessing
from sklearn.compose import ColumnTransformer
from autotrain import logger
from autotrain.trainers.common import (
ALLOW_REMOTE_CODE,
monitor,
pause_space,
remove_autotrain_data,
save_training_params,
)
from autotrain.trainers.tabular import utils
from autotrain.trainers.tabular.params import TabularParams
def parse_args():
# get training_config.json from the end user
parser = argparse.ArgumentParser()
parser.add_argument("--training_config", type=str, required=True)
return parser.parse_args()
def optimize(trial, model_name, xtrain, xvalid, ytrain, yvalid, eval_metric, task, preprocessor):
"""
Optimize the model based on the given trial and parameters.
Parameters:
trial (dict or optuna.trial.Trial): The trial object or dictionary containing hyperparameters.
model_name (str): The name of the model to be used (e.g., "xgboost").
xtrain (pd.DataFrame or np.ndarray): Training features.
xvalid (pd.DataFrame or np.ndarray): Validation features.
ytrain (pd.Series or np.ndarray): Training labels.
yvalid (pd.Series or np.ndarray): Validation labels.
eval_metric (str): The evaluation metric to be used for optimization.
task (str): The type of task (e.g., "binary_classification", "multi_class_classification", "single_column_regression").
preprocessor (object): The preprocessor object to be applied to the data.
Returns:
float or tuple: If trial is a dictionary, returns a tuple containing the models, preprocessor, and metric dictionary.
Otherwise, returns the loss value based on the evaluation metric.
"""
if isinstance(trial, dict):
params = trial
else:
params = utils.get_params(trial, model_name, task)
labels = None
if task == "multi_class_classification":
labels = np.unique(ytrain)
metrics = utils.TabularMetrics(sub_task=task, labels=labels)
if task in ("binary_classification", "multi_class_classification", "single_column_regression"):
ytrain = ytrain.ravel()
yvalid = yvalid.ravel()
if preprocessor is not None:
try:
xtrain = preprocessor.fit_transform(xtrain)
xvalid = preprocessor.transform(xvalid)
except ValueError:
logger.info("Preprocessing failed, using nan_to_num")
train_cols = xtrain.columns.tolist()
valid_cols = xvalid.columns.tolist()
xtrain = np.nan_to_num(xtrain)
xvalid = np.nan_to_num(xvalid)
# convert back to dataframe
xtrain = pd.DataFrame(xtrain, columns=train_cols)
xvalid = pd.DataFrame(xvalid, columns=valid_cols)
xtrain = preprocessor.fit_transform(xtrain)
xvalid = preprocessor.transform(xvalid)
if model_name == "xgboost":
params["eval_metric"] = eval_metric
_model = utils.TabularModel(model_name, preprocessor=None, sub_task=task, params=params)
model = _model.pipeline
models = []
if task in ("multi_label_classification", "multi_column_regression"):
# also multi_column_regression
ypred = []
models = [model] * ytrain.shape[1]
for idx, _m in enumerate(models):
if model_name == "xgboost":
_m.fit(
xtrain,
ytrain[:, idx],
model__eval_set=[(xvalid, yvalid[:, idx])],
model__verbose=False,
)
else:
_m.fit(xtrain, ytrain[:, idx])
if task == "multi_column_regression":
ypred_temp = _m.predict(xvalid)
else:
if _model.use_predict_proba:
ypred_temp = _m.predict_proba(xvalid)[:, 1]
else:
ypred_temp = _m.predict(xvalid)
ypred.append(ypred_temp)
ypred = np.column_stack(ypred)
else:
models = [model]
if model_name == "xgboost":
model.fit(
xtrain,
ytrain,
model__eval_set=[(xvalid, yvalid)],
model__verbose=False,
)
else:
models[0].fit(xtrain, ytrain)
if _model.use_predict_proba:
ypred = models[0].predict_proba(xvalid)
else:
ypred = models[0].predict(xvalid)
if task == "multi_class_classification":
if ypred.reshape(xvalid.shape[0], -1).shape[1] != len(labels):
ypred_ohe = np.zeros((xvalid.shape[0], len(labels)))
ypred_ohe[np.arange(xvalid.shape[0]), ypred] = 1
ypred = ypred_ohe
if task == "binary_classification":
if ypred.reshape(xvalid.shape[0], -1).shape[1] != 2:
ypred = np.column_stack([1 - ypred, ypred])
# calculate metric
metric_dict = metrics.calculate(yvalid, ypred)
# change eval_metric key to loss
if eval_metric in metric_dict:
metric_dict["loss"] = metric_dict[eval_metric]
logger.info(f"Metrics: {metric_dict}")
if isinstance(trial, dict):
return models, preprocessor, metric_dict
return metric_dict["loss"]
@monitor
def train(config):
"""
Train a tabular model based on the provided configuration.
Args:
config (dict or TabularParams): Configuration parameters for training. If a dictionary is provided, it will be converted to a TabularParams object.
Raises:
Exception: If `valid_data` is None, indicating that a valid split for tabular training was not provided.
The function performs the following steps:
1. Loads the training and validation datasets from disk or a specified data path.
2. Identifies and processes categorical and numerical columns.
3. Encodes target columns for classification tasks.
4. Constructs preprocessing pipelines for numerical and categorical data.
5. Determines the sub-task (e.g., binary classification, multi-class classification, regression).
6. Optimizes the model using Optuna for hyperparameter tuning.
7. Saves the best model and target encoders to disk.
8. Creates and saves a model card.
9. Optionally pushes the model to the Hugging Face Hub.
Note:
The function expects the configuration to contain various parameters such as `data_path`, `train_split`, `valid_split`, `categorical_columns`, `numerical_columns`, `model`, `task`, `num_trials`, `time_limit`, `project_name`, `token`, `username`, and `push_to_hub`.
"""
if isinstance(config, dict):
config = TabularParams(**config)
logger.info("Starting training...")
logger.info(f"Training config: {config}")
train_data = None
valid_data = None
if config.data_path == f"{config.project_name}/autotrain-data":
logger.info("loading dataset from disk")
train_data = load_from_disk(config.data_path)[config.train_split]
else:
if ":" in config.train_split:
dataset_config_name, split = config.train_split.split(":")
train_data = load_dataset(
config.data_path,
name=dataset_config_name,
split=split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
else:
train_data = load_dataset(
config.data_path,
split=config.train_split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
train_data = train_data.to_pandas()
if config.valid_split is not None:
if config.data_path == f"{config.project_name}/autotrain-data":
logger.info("loading dataset from disk")
valid_data = load_from_disk(config.data_path)[config.valid_split]
else:
if ":" in config.valid_split:
dataset_config_name, split = config.valid_split.split(":")
valid_data = load_dataset(
config.data_path,
name=dataset_config_name,
split=split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
else:
valid_data = load_dataset(
config.data_path,
split=config.valid_split,
token=config.token,
trust_remote_code=ALLOW_REMOTE_CODE,
)
valid_data = valid_data.to_pandas()
if valid_data is None:
raise Exception("valid_data is None. Please provide a valid_split for tabular training.")
# determine which columns are categorical
if config.categorical_columns is None:
config.categorical_columns = utils.get_categorical_columns(train_data)
if config.numerical_columns is None:
config.numerical_columns = utils.get_numerical_columns(train_data)
_id_target_cols = (
[config.id_column] + config.target_columns if config.id_column is not None else config.target_columns
)
config.numerical_columns = [c for c in config.numerical_columns if c not in _id_target_cols]
config.categorical_columns = [c for c in config.categorical_columns if c not in _id_target_cols]
useful_columns = config.categorical_columns + config.numerical_columns
logger.info(f"Categorical columns: {config.categorical_columns}")
logger.info(f"Numerical columns: {config.numerical_columns}")
# convert object columns to categorical
for col in config.categorical_columns:
train_data[col] = train_data[col].astype("category")
valid_data[col] = valid_data[col].astype("category")
logger.info(f"Useful columns: {useful_columns}")
target_encoders = {}
if config.task == "classification":
for target_column in config.target_columns:
target_encoder = preprocessing.LabelEncoder()
target_encoder.fit(train_data[target_column])
target_encoders[target_column] = target_encoder
# encode target columns in train and valid data
for k, v in target_encoders.items():
train_data.loc[:, k] = v.transform(train_data[k])
valid_data.loc[:, k] = v.transform(valid_data[k])
numeric_transformer = "passthrough"
categorical_transformer = "passthrough"
transformers = []
preprocessor = None
numeric_steps = []
imputer = utils.get_imputer(config.numerical_imputer)
scaler = utils.get_scaler(config.numeric_scaler)
if imputer is not None:
numeric_steps.append(("num_imputer", imputer))
if scaler is not None:
numeric_steps.append(("num_scaler", scaler))
if len(numeric_steps) > 0:
numeric_transformer = pipeline.Pipeline(numeric_steps)
transformers.append(("numeric", numeric_transformer, config.numerical_columns))
categorical_steps = []
imputer = utils.get_imputer(config.categorical_imputer)
if imputer is not None:
categorical_steps.append(("cat_imputer", imputer))
if len(config.categorical_columns) > 0:
if config.model in ("xgboost", "lightgbm", "randomforest", "catboost", "extratrees"):
categorical_steps.append(
(
"cat_encoder",
preprocessing.OrdinalEncoder(
handle_unknown="use_encoded_value",
categories="auto",
unknown_value=np.nan,
),
)
)
else:
categorical_steps.append(
(
"cat_encoder",
preprocessing.OneHotEncoder(handle_unknown="ignore"),
)
)
if len(categorical_steps) > 0:
categorical_transformer = pipeline.Pipeline(categorical_steps)
transformers.append(("categorical", categorical_transformer, config.categorical_columns))
if len(transformers) > 0:
preprocessor = ColumnTransformer(transformers=transformers, verbose=True, n_jobs=-1)
logger.info(f"Preprocessor: {preprocessor}")
xtrain = train_data[useful_columns].reset_index(drop=True)
xvalid = valid_data[useful_columns].reset_index(drop=True)
ytrain = train_data[config.target_columns].values
yvalid = valid_data[config.target_columns].values
# determine sub_task
if config.task == "classification":
if len(target_encoders) == 1:
if len(target_encoders[config.target_columns[0]].classes_) == 2:
sub_task = "binary_classification"
else:
sub_task = "multi_class_classification"
else:
sub_task = "multi_label_classification"
else:
if len(config.target_columns) > 1:
sub_task = "multi_column_regression"
else:
sub_task = "single_column_regression"
eval_metric, direction = utils.get_metric_direction(sub_task)
logger.info(f"Sub task: {sub_task}")
args = {
"model_name": config.model,
"xtrain": xtrain,
"xvalid": xvalid,
"ytrain": ytrain,
"yvalid": yvalid,
"eval_metric": eval_metric,
"task": sub_task,
"preprocessor": preprocessor,
}
optimize_func = partial(optimize, **args)
study = optuna.create_study(direction=direction, study_name="AutoTrain")
study.optimize(optimize_func, n_trials=config.num_trials, timeout=config.time_limit)
best_params = study.best_params
logger.info(f"Best params: {best_params}")
best_models, best_preprocessors, best_metrics = optimize(best_params, **args)
models = (
[pipeline.Pipeline([("preprocessor", best_preprocessors), ("model", m)]) for m in best_models]
if best_preprocessors is not None
else best_models
)
joblib.dump(
models[0] if len(models) == 1 else models,
os.path.join(config.project_name, "model.joblib"),
)
joblib.dump(target_encoders, os.path.join(config.project_name, "target_encoders.joblib"))
model_card = utils.create_model_card(config, sub_task, best_params, best_metrics)
if model_card is not None:
with open(os.path.join(config.project_name, "README.md"), "w") as fp:
fp.write(f"{model_card}")
# remove token key from training_params.json located in output directory
# first check if file exists
if os.path.exists(f"{config.project_name}/training_params.json"):
training_params = json.load(open(f"{config.project_name}/training_params.json"))
training_params.pop("token")
json.dump(training_params, open(f"{config.project_name}/training_params.json", "w"))
# save model card to output directory as README.md
with open(f"{config.project_name}/README.md", "w") as f:
f.write(model_card)
if config.push_to_hub:
remove_autotrain_data(config)
save_training_params(config)
logger.info("Pushing model to hub...")
api = HfApi(token=config.token)
api.create_repo(repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True)
api.upload_folder(
folder_path=config.project_name, repo_id=f"{config.username}/{config.project_name}", repo_type="model"
)
pause_space(config)
if __name__ == "__main__":
args = parse_args()
training_config = json.load(open(args.training_config))
config = TabularParams(**training_config)
train(config)