hlnicholls
feat: updated interace
8a6cf88
raw
history blame
7.29 kB
import streamlit as st
import re
import numpy as np
import pandas as pd
import pickle
import sklearn
import catboost
import shap
from shap_plots import shap_summary_plot
from dynamic_shap_plots import matplotlib_to_plotly, summary_plot_plotly_fig
import plotly.tools as tls
from dash import dcc
import matplotlib.pyplot as plt
import plotly.graph_objs as go
try:
import matplotlib.pyplot as pl
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.ticker import MaxNLocator
except ImportError:
pass
st.set_option('deprecation.showPyplotGlobalUse', False)
seed = 0
annotations = pd.read_csv("all_genes_merged_ml_data.csv")
annotations.fillna(0, inplace=True)
annotations = annotations.set_index("Gene")
model_path = "best_model_fitted.pkl"
with open(model_path, 'rb') as file:
catboost_model = pickle.load(file)
probabilities = catboost_model.predict_proba(annotations)
prob_df = pd.DataFrame(probabilities, index=annotations.index, columns=['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely'])
df_total = pd.concat([prob_df, annotations], axis=1)
# Create tabs for navigation
with st.sidebar:
st.sidebar.title("Navigation")
tab = st.sidebar.radio("Go to", ("Gene Prioritisation", "Interactive SHAP Plot", "Supervised SHAP Clustering"))
st.title('Blood Pressure Gene Prioritisation Post-GWAS')
st.markdown("""A machine learning pipeline for predicting disease-causing genes post-genome-wide association study in blood pressure.""")
# Define a function to collect genes from input
collect_genes = lambda x: [str(i) for i in re.split(",|,\s+|\s+", x) if i != ""]
input_gene_list = st.text_input("Input a list of multiple HGNC genes (enter comma separated):")
gene_list = collect_genes(input_gene_list)
explainer = shap.TreeExplainer(catboost_model)
@st.cache_data
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
probability_columns = ['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely']
features_list = [column for column in df_total.columns if column not in probability_columns]
features = df_total[features_list]
# Page 1: Gene Prioritisation
if tab == "Gene Prioritisation":
if len(gene_list) > 1:
df = df_total[df_total.index.isin(gene_list)]
df['Gene'] = df.index
df.reset_index(drop=True, inplace=True)
required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
df = df[required_columns]
st.dataframe(df)
output = df[['Gene'] + probability_columns]
csv = convert_df(output)
st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
df_shap = df.drop(columns=probability_columns + ['Gene'])
shap_values = explainer.shap_values(df_shap)
col1, col2 = st.columns(2)
class_names = ["Most likely", "Probable", "Least likely"]
with col1:
st.subheader("Global SHAP Summary Plot")
shap.summary_plot(shap_values, df_shap, plot_type="bar", class_names=class_names)
st.pyplot(bbox_inches='tight', clear_figure=True)
with col2:
st.subheader(f"{class_names[0]} Gene Prediction")
shap.summary_plot(shap_values[0], df_shap)
st.pyplot(bbox_inches='tight', clear_figure=True)
col3, col4 = st.columns(2)
with col3:
st.subheader(f"{class_names[1]} Gene Prediction")
shap.summary_plot(shap_values[1], df_shap)
st.pyplot(bbox_inches='tight', clear_figure=True)
with col4:
st.subheader(f"{class_names[2]} Gene Prediction")
shap.summary_plot(shap_values[2], df_shap)
st.pyplot(bbox_inches='tight', clear_figure=True)
else:
pass
input_gene = st.text_input("Input an individual HGNC gene:")
if input_gene:
df2 = df_total[df_total.index == input_gene]
class_names = ["Most likely", "Probable", "Least likely"]
if not df2.empty:
df2['Gene'] = df2.index
df2.reset_index(drop=True, inplace=True)
required_columns = ['Gene'] + probability_columns + [col for col in df2.columns if col not in probability_columns and col != 'Gene']
df2 = df2[required_columns]
st.dataframe(df2)
if ' ' in input_gene or ',' in input_gene:
st.write('Input Error: Please input only a single HGNC gene name with no white spaces or commas.')
else:
df2_shap = df_total.loc[[input_gene], [col for col in df_total.columns if col not in probability_columns + ['Gene']]]
print(df2_shap.columns)
shap_values = explainer.shap_values(df2_shap)
shap.getjs()
for i in range(3):
st.subheader(f"Force Plot for {class_names[i]} Prediction")
force_plot = shap.force_plot(
explainer.expected_value[i],
shap_values[i],
df2_shap,
matplotlib=True,
show=False
)
st.pyplot(fig=force_plot)
else:
st.write("Gene not found in the dataset.")
else:
pass
st.markdown("""
### Total Gene Prioritisation Results for All Genes:
""")
df_total_output = df_total
df_total_output['Gene'] = df_total_output.index
#df_total_output.reset_index(drop=True, inplace=True)
st.dataframe(df_total_output)
csv = convert_df(df_total_output)
st.download_button("Download Gene Prioritisation", csv, "all_genes_bp_prioritisation.csv", "text/csv", key='download-all-csv')
# Page 2: Interactive SHAP Plot
elif tab == "Interactive SHAP Plot":
st.title("Interactive SHAP Plot")
if len(gene_list) > 1:
df = df_total[df_total.index.isin(gene_list)]
df['Gene'] = df.index
df.reset_index(drop=True, inplace=True)
required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
df = df[required_columns]
st.dataframe(df)
output = df[['Gene'] + probability_columns]
csv = convert_df(output)
st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
df_shap = df.drop(columns=probability_columns + ['Gene'])
shap_values = explainer.shap_values(df_shap)
# Use shap's summary_plot function for interactivity
# summary_plot = shap.summary_plot(shap_values[0], df_shap, plot_type='interactive', max_display=10)
summary_plot = summary_plot_plotly_fig(df_shap, shap_values[0], max_display=10)
st.pyplot(summary_plot)
st.caption("SHAP Summary Plot of All Input Genes")
# Page 3: Supervised SHAP Clustering
elif tab == "Supervised SHAP Clustering":
st.title("Supervised SHAP Clustering")
# Add your code here to implement supervised SHAP clustering