Spaces:
Running
Running
File size: 17,796 Bytes
74ead6a 3c02b8d 74ead6a 25bfcbf 74ead6a dc030d6 74ead6a 3c02b8d 74ead6a 3c02b8d 74ead6a e12bd69 74ead6a 1fa456e 9b990a4 74ead6a 1fa456e cf6903d 9b990a4 74ead6a 9b990a4 74ead6a 9b990a4 3c02b8d 6924eba 3c02b8d c598099 9b990a4 74ead6a c598099 74ead6a 3c02b8d 74ead6a 3c02b8d 74ead6a 3c02b8d 9b990a4 3c02b8d 9b990a4 dc030d6 9b990a4 3c02b8d 9b990a4 74ead6a 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 3c02b8d 9b990a4 e12bd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import gradio as gr
import pandas as pd
from nomad_data import country_emoji_map, data, terrain_emoji_map
df = pd.DataFrame(data)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def style_quality_of_life(val):
"""Style the Quality of Life column with color gradient from red to green"""
if pd.isna(val):
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;'
min_val = 5.0
max_val = 9.0
normalized = (val - min_val) / (max_val - min_val)
normalized = max(0, min(normalized, 1))
percentage = int(normalized * 100)
if normalized < 0.5:
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
else:
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)'
def style_internet_speed(val):
"""Style the Internet Speed column from red (slow) to green (fast)"""
if pd.isna(val):
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;'
min_val = 20 # Slow internet
max_val = 300 # Fast internet
normalized = (val - min_val) / (max_val - min_val)
normalized = max(0, min(normalized, 1))
percentage = int(normalized * 100)
if normalized < 0.5:
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
else:
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)'
def style_dataframe(df):
"""Apply styling to the entire dataframe"""
styled_df = df.copy()
styled_df['Terrain'] = styled_df['Terrain'].apply(lambda x: terrain_emoji_map.get(x, x) if pd.notna(x) else x)
styler = styled_df.style
styler = styler.applymap(style_quality_of_life, subset=['Quality of Life'])
styler = styler.applymap(style_internet_speed, subset=['Internet Speed (Mbps)'])
styler = styler.highlight_null(props='color: #999; font-style: italic; background-color: rgba(200, 200, 200, 0.2)')
styler = styler.format({
'Quality of Life': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available',
'Internet Speed (Mbps)': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available',
'Monthly Cost Living (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available',
'Visa Length (Months)': lambda x: f'{x:.0f}' if pd.notna(x) else 'Data Not Available',
'Visa Cost (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available',
'Growth Trend (5 Years)': lambda x: f'{x}' if pd.notna(x) else 'Data Not Available'
})
return styler
def filter_data(country, max_cost):
"""Filter data based on country and maximum cost of living"""
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
if max_cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= max_cost) | (filtered_df["Monthly Cost Living (USD)"].isna())
filtered_df = filtered_df[cost_mask]
return style_dataframe(filtered_df)
def get_unique_values(column):
unique_values = ["All"] + sorted(df[column].unique().tolist())
return unique_values
def get_country_with_emoji(column):
choices_with_emoji = ["โ๏ธ All"]
for c in df[column].unique():
if c in country_emoji_map:
choices_with_emoji.append(country_emoji_map[c])
else:
choices_with_emoji.append(c)
return sorted(choices_with_emoji)
def get_terrain_with_emoji():
terrains = ["โจ All"]
for terrain in sorted(df["Terrain"].unique()):
if terrain in terrain_emoji_map:
terrains.append(terrain_emoji_map[terrain])
return terrains
styled_df = style_dataframe(df)
with gr.Blocks(js=js_func, css="""
.gradio-container .table-wrap {
font-family: 'Inter', sans-serif;
}
.gradio-container table td, .gradio-container table th {
text-align: left;
}
.gradio-container table th {
background-color: #f3f4f6;
font-weight: 600;
}
/* Style for null values */
.null-value {
color: #999;
font-style: italic;
background-color: rgba(200, 200, 200, 0.2);
}
.title {
font-size: 3rem;
font-weight: 600;
text-align: center;
}
.app-subtitle {
color: rgba(255, 255, 255, 0.8);
font-size: 1.2rem;
margin-bottom: 15px;
}
""") as demo:
gr.HTML(elem_classes="title", value="๐")
gr.HTML("<img src='https://see.fontimg.com/api/rf5/JpZqa/MWMyNzc2ODk3OTFlNDk2OWJkY2VjYTIzNzFlY2E4MWIudHRm/bm9tYWQgZGVzdGluYXRpb25z/super-feel.png?r=fs&h=130&w=2000&fg=e2e2e2&bg=FFFFFF&tb=1&s=65' alt='Graffiti fonts'></a>")
gr.Markdown("Discover the best places for digital nomads around the globe")
with gr.Row():
with gr.Column(scale=1):
cost_slider = gr.Slider(
minimum=500,
maximum=4000,
value=4000,
step=100,
label="๐ฐ Maximum Monthly Cost of Living (USD)"
)
min_internet = gr.Slider(
minimum=0,
maximum=400,
value=0,
step=10,
label="๐ Minimum Internet Speed (Mbps)"
)
min_quality = gr.Slider(
minimum=5,
maximum=10,
value=5,
step=0.1,
label="โญ Minimum Quality of Life"
)
with gr.Column(scale=1):
country_dropdown = gr.Dropdown(
choices=get_country_with_emoji("Country"),
value="โ๏ธ All",
label="๐ Filter by Country"
)
terrain_dropdown = gr.Dropdown(
choices=get_terrain_with_emoji(),
value="โจ All",
label="๐๏ธ Filter by Terrain"
)
with gr.Column(scale=1):
visa_filter = gr.CheckboxGroup(
choices=["Has Digital Nomad Visa", "Visa Length โฅ 12 Months"],
label="๐ Visa Requirements"
)
special_features = gr.CheckboxGroup(
choices=["Coastal Cities", "Cultural Hotspots", "Affordable (<$1000/month)"],
label="โจ Special Features"
)
data_table = gr.Dataframe(
value=styled_df,
datatype=["str", "str", "str", "number", "number", "number", "str", "number", "number", "str", "str"],
max_height=600,
interactive=False,
show_copy_button=True,
show_row_numbers=True,
show_search=True,
show_fullscreen_button=True,
pinned_columns=3
)
def process_country_filter(country, cost):
if country and country.startswith("โ๏ธ All"):
country = "All"
else:
for emoji_code in ["๐ง๐ท", "๐ญ๐บ", "๐บ๐พ", "๐ต๐น", "๐ฌ๐ช", "๐น๐ญ", "๐ฆ๐ช", "๐ช๐ธ", "๐ฎ๐น", "๐จ๐ฆ", "๐จ๐ด", "๐ฒ๐ฝ", "๐ฏ๐ต", "๐ฐ๐ท"]:
if country and emoji_code in country:
country = country.split(" ", 1)[1]
break
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
if cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna())
filtered_df = filtered_df[cost_mask]
return style_dataframe(filtered_df)
def apply_advanced_filters(country, cost, min_internet_speed, min_qol, visa_reqs, features, terrain):
if country and country.startswith("โ๏ธ All"):
country = "All"
else:
for emoji_code in ["๐ง๐ท", "๐ญ๐บ", "๐บ๐พ", "๐ต๐น", "๐ฌ๐ช", "๐น๐ญ", "๐ฆ๐ช", "๐ช๐ธ", "๐ฎ๐น", "๐จ๐ฆ", "๐จ๐ด", "๐ฒ๐ฝ", "๐ฏ๐ต", "๐ฐ๐ท"]:
if country and emoji_code in country:
country = country.split(" ", 1)[1]
break
if terrain and terrain.startswith("โจ All"):
terrain = "All"
else:
for emoji in ["๐๏ธ", "โฐ๏ธ", "๐๏ธ", "๐๏ธ", "๐ด", "๐๏ธ", "๐ฒ", "๐พ"]:
if terrain and emoji in terrain:
terrain = terrain.split(" ", 1)[1]
break
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
if cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna())
filtered_df = filtered_df[cost_mask]
if min_internet_speed > 0:
filtered_df = filtered_df[filtered_df["Internet Speed (Mbps)"] >= min_internet_speed]
if min_qol > 5:
filtered_df = filtered_df[filtered_df["Quality of Life"] >= min_qol]
if "Has Digital Nomad Visa" in visa_reqs:
filtered_df = filtered_df[filtered_df["Digital Nomad Visa"] == "Yes"]
if "Visa Length โฅ 12 Months" in visa_reqs:
filtered_df = filtered_df[filtered_df["Visa Length (Months)"] >= 12]
if terrain and terrain != "All":
filtered_df = filtered_df[filtered_df["Terrain"] == terrain]
if "Coastal Cities" in features:
coastal_keywords = ["coast", "beach", "sea", "ocean"]
mask = filtered_df["Key Feature"].str.contains("|".join(coastal_keywords), case=False, na=False)
filtered_df = filtered_df[mask]
if "Cultural Hotspots" in features:
cultural_keywords = ["cultur", "art", "histor", "heritage"]
mask = filtered_df["Key Feature"].str.contains("|".join(cultural_keywords), case=False, na=False)
filtered_df = filtered_df[mask]
if "Affordable (<$1000/month)" in features:
filtered_df = filtered_df[filtered_df["Monthly Cost Living (USD)"] < 1000]
return style_dataframe(filtered_df)
country_dropdown.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
cost_slider.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
min_internet.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
min_quality.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
visa_filter.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
special_features.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
terrain_dropdown.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### ๐งณ Digital Nomad Tips")
gr.Markdown("- Look for places with digital nomad visas for longer stays \n"
"- Consider internet speed if you need to attend video meetings \n"
"- Balance cost of living with quality of life for the best experience \n"
"- Some newer nomad destinations may have incomplete data")
gr.Markdown("### ๐ฏ Find Your Ideal Destination")
with gr.Row():
with gr.Column():
priority = gr.CheckboxGroup(
["Best Quality of Life", "Fastest Internet", "Most Affordable", "Balance of All Factors"],
label="What are Your Priorities?",
value=["Balance of All Factors"]
)
find_btn = gr.Button("Find My Ideal Destination", variant="primary")
recommendation = gr.Textbox(label="Recommended Location", lines=3)
def recommend_location(priorities, max_budget):
if not priorities:
return "Please select at least one priority to get a recommendation."
budget_filtered_df = df[df["Monthly Cost Living (USD)"] <= max_budget]
budget_warning = ""
if len(budget_filtered_df) == 0:
budget_filtered_df = df
budget_warning = "โ ๏ธ No cities match your budget. Showing best options regardless of cost.\n\n"
recommendations = []
if "Best Quality of Life" in priorities:
top_city = budget_filtered_df.sort_values("Quality of Life", ascending=False).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Quality of Life: {top_city['Quality of Life']}\n"
message += f"Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
if "Fastest Internet" in priorities:
top_city = budget_filtered_df.sort_values("Internet Speed (Mbps)", ascending=False).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Internet Speed: {top_city['Internet Speed (Mbps)']} Mbps\n"
message += f"Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
if "Most Affordable" in priorities:
top_city = budget_filtered_df.sort_values("Monthly Cost Living (USD)", ascending=True).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Quality of Life: {top_city['Quality of Life']}, Internet: {top_city['Internet Speed (Mbps)']} Mbps\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
if "Balance of All Factors" in priorities:
df_temp = budget_filtered_df.copy()
df_temp['quality_norm'] = df_temp['Quality of Life'] / 10
df_temp['internet_norm'] = df_temp['Internet Speed (Mbps)'] / 400
df_temp['cost_norm'] = 1 - (df_temp['Monthly Cost Living (USD)'] / 4000)
df_temp['composite_score'] = (df_temp['quality_norm'] + df_temp['internet_norm'] + df_temp['cost_norm']) / 3
top_city = df_temp.sort_values("composite_score", ascending=False).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Balanced Choice\n"
message += f"Quality: {top_city['Quality of Life']}, Internet: {top_city['Internet Speed (Mbps)']} Mbps, Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
return budget_warning + "\n\n".join(recommendations)
find_btn.click(recommend_location, inputs=[priority, cost_slider], outputs=recommendation)
cost_slider.change(recommend_location, inputs=[priority, cost_slider], outputs=recommendation)
demo.launch()
|