hmb's picture
hmb HF Staff
Update app.py
6924eba verified
raw
history blame
17.8 kB
import gradio as gr
import pandas as pd
from nomad_data import country_emoji_map, data, terrain_emoji_map
df = pd.DataFrame(data)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def style_quality_of_life(val):
"""Style the Quality of Life column with color gradient from red to green"""
if pd.isna(val):
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;'
min_val = 5.0
max_val = 9.0
normalized = (val - min_val) / (max_val - min_val)
normalized = max(0, min(normalized, 1))
percentage = int(normalized * 100)
if normalized < 0.5:
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
else:
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)'
def style_internet_speed(val):
"""Style the Internet Speed column from red (slow) to green (fast)"""
if pd.isna(val):
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;'
min_val = 20 # Slow internet
max_val = 300 # Fast internet
normalized = (val - min_val) / (max_val - min_val)
normalized = max(0, min(normalized, 1))
percentage = int(normalized * 100)
if normalized < 0.5:
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
else:
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)'
def style_dataframe(df):
"""Apply styling to the entire dataframe"""
styled_df = df.copy()
styled_df['Terrain'] = styled_df['Terrain'].apply(lambda x: terrain_emoji_map.get(x, x) if pd.notna(x) else x)
styler = styled_df.style
styler = styler.applymap(style_quality_of_life, subset=['Quality of Life'])
styler = styler.applymap(style_internet_speed, subset=['Internet Speed (Mbps)'])
styler = styler.highlight_null(props='color: #999; font-style: italic; background-color: rgba(200, 200, 200, 0.2)')
styler = styler.format({
'Quality of Life': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available',
'Internet Speed (Mbps)': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available',
'Monthly Cost Living (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available',
'Visa Length (Months)': lambda x: f'{x:.0f}' if pd.notna(x) else 'Data Not Available',
'Visa Cost (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available',
'Growth Trend (5 Years)': lambda x: f'{x}' if pd.notna(x) else 'Data Not Available'
})
return styler
def filter_data(country, max_cost):
"""Filter data based on country and maximum cost of living"""
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
if max_cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= max_cost) | (filtered_df["Monthly Cost Living (USD)"].isna())
filtered_df = filtered_df[cost_mask]
return style_dataframe(filtered_df)
def get_unique_values(column):
unique_values = ["All"] + sorted(df[column].unique().tolist())
return unique_values
def get_country_with_emoji(column):
choices_with_emoji = ["✈️ All"]
for c in df[column].unique():
if c in country_emoji_map:
choices_with_emoji.append(country_emoji_map[c])
else:
choices_with_emoji.append(c)
return sorted(choices_with_emoji)
def get_terrain_with_emoji():
terrains = ["✨ All"]
for terrain in sorted(df["Terrain"].unique()):
if terrain in terrain_emoji_map:
terrains.append(terrain_emoji_map[terrain])
return terrains
styled_df = style_dataframe(df)
with gr.Blocks(js=js_func, css="""
.gradio-container .table-wrap {
font-family: 'Inter', sans-serif;
}
.gradio-container table td, .gradio-container table th {
text-align: left;
}
.gradio-container table th {
background-color: #f3f4f6;
font-weight: 600;
}
/* Style for null values */
.null-value {
color: #999;
font-style: italic;
background-color: rgba(200, 200, 200, 0.2);
}
.title {
font-size: 3rem;
font-weight: 600;
text-align: center;
}
.app-subtitle {
color: rgba(255, 255, 255, 0.8);
font-size: 1.2rem;
margin-bottom: 15px;
}
""") as demo:
gr.HTML(elem_classes="title", value="🌍")
gr.HTML("<img src='https://see.fontimg.com/api/rf5/JpZqa/MWMyNzc2ODk3OTFlNDk2OWJkY2VjYTIzNzFlY2E4MWIudHRm/bm9tYWQgZGVzdGluYXRpb25z/super-feel.png?r=fs&h=130&w=2000&fg=e2e2e2&bg=FFFFFF&tb=1&s=65' alt='Graffiti fonts'></a>")
gr.Markdown("Discover the best places for digital nomads around the globe")
with gr.Row():
with gr.Column(scale=1):
cost_slider = gr.Slider(
minimum=500,
maximum=4000,
value=4000,
step=100,
label="💰 Maximum Monthly Cost of Living (USD)"
)
min_internet = gr.Slider(
minimum=0,
maximum=400,
value=0,
step=10,
label="🌐 Minimum Internet Speed (Mbps)"
)
min_quality = gr.Slider(
minimum=5,
maximum=10,
value=5,
step=0.1,
label="⭐ Minimum Quality of Life"
)
with gr.Column(scale=1):
country_dropdown = gr.Dropdown(
choices=get_country_with_emoji("Country"),
value="✈️ All",
label="🌏 Filter by Country"
)
terrain_dropdown = gr.Dropdown(
choices=get_terrain_with_emoji(),
value="✨ All",
label="🏞️ Filter by Terrain"
)
with gr.Column(scale=1):
visa_filter = gr.CheckboxGroup(
choices=["Has Digital Nomad Visa", "Visa Length ≥ 12 Months"],
label="🛂 Visa Requirements"
)
special_features = gr.CheckboxGroup(
choices=["Coastal Cities", "Cultural Hotspots", "Affordable (<$1000/month)"],
label="✨ Special Features"
)
data_table = gr.Dataframe(
value=styled_df,
datatype=["str", "str", "str", "number", "number", "number", "str", "number", "number", "str", "str"],
max_height=600,
interactive=False,
show_copy_button=True,
show_row_numbers=True,
show_search=True,
show_fullscreen_button=True,
pinned_columns=3
)
def process_country_filter(country, cost):
if country and country.startswith("✈️ All"):
country = "All"
else:
for emoji_code in ["🇧🇷", "🇭🇺", "🇺🇾", "🇵🇹", "🇬🇪", "🇹🇭", "🇦🇪", "🇪🇸", "🇮🇹", "🇨🇦", "🇨🇴", "🇲🇽", "🇯🇵", "🇰🇷"]:
if country and emoji_code in country:
country = country.split(" ", 1)[1]
break
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
if cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna())
filtered_df = filtered_df[cost_mask]
return style_dataframe(filtered_df)
def apply_advanced_filters(country, cost, min_internet_speed, min_qol, visa_reqs, features, terrain):
if country and country.startswith("✈️ All"):
country = "All"
else:
for emoji_code in ["🇧🇷", "🇭🇺", "🇺🇾", "🇵🇹", "🇬🇪", "🇹🇭", "🇦🇪", "🇪🇸", "🇮🇹", "🇨🇦", "🇨🇴", "🇲🇽", "🇯🇵", "🇰🇷"]:
if country and emoji_code in country:
country = country.split(" ", 1)[1]
break
if terrain and terrain.startswith("✨ All"):
terrain = "All"
else:
for emoji in ["🏖️", "⛰️", "🏙️", "🏜️", "🌴", "🏝️", "🌲", "🌾"]:
if terrain and emoji in terrain:
terrain = terrain.split(" ", 1)[1]
break
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
if cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna())
filtered_df = filtered_df[cost_mask]
if min_internet_speed > 0:
filtered_df = filtered_df[filtered_df["Internet Speed (Mbps)"] >= min_internet_speed]
if min_qol > 5:
filtered_df = filtered_df[filtered_df["Quality of Life"] >= min_qol]
if "Has Digital Nomad Visa" in visa_reqs:
filtered_df = filtered_df[filtered_df["Digital Nomad Visa"] == "Yes"]
if "Visa Length ≥ 12 Months" in visa_reqs:
filtered_df = filtered_df[filtered_df["Visa Length (Months)"] >= 12]
if terrain and terrain != "All":
filtered_df = filtered_df[filtered_df["Terrain"] == terrain]
if "Coastal Cities" in features:
coastal_keywords = ["coast", "beach", "sea", "ocean"]
mask = filtered_df["Key Feature"].str.contains("|".join(coastal_keywords), case=False, na=False)
filtered_df = filtered_df[mask]
if "Cultural Hotspots" in features:
cultural_keywords = ["cultur", "art", "histor", "heritage"]
mask = filtered_df["Key Feature"].str.contains("|".join(cultural_keywords), case=False, na=False)
filtered_df = filtered_df[mask]
if "Affordable (<$1000/month)" in features:
filtered_df = filtered_df[filtered_df["Monthly Cost Living (USD)"] < 1000]
return style_dataframe(filtered_df)
country_dropdown.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
cost_slider.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
min_internet.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
min_quality.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
visa_filter.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
special_features.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
terrain_dropdown.change(
apply_advanced_filters,
[country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features, terrain_dropdown],
data_table
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🧳 Digital Nomad Tips")
gr.Markdown("- Look for places with digital nomad visas for longer stays \n"
"- Consider internet speed if you need to attend video meetings \n"
"- Balance cost of living with quality of life for the best experience \n"
"- Some newer nomad destinations may have incomplete data")
gr.Markdown("### 🎯 Find Your Ideal Destination")
with gr.Row():
with gr.Column():
priority = gr.CheckboxGroup(
["Best Quality of Life", "Fastest Internet", "Most Affordable", "Balance of All Factors"],
label="What are Your Priorities?",
value=["Balance of All Factors"]
)
find_btn = gr.Button("Find My Ideal Destination", variant="primary")
recommendation = gr.Textbox(label="Recommended Location", lines=3)
def recommend_location(priorities, max_budget):
if not priorities:
return "Please select at least one priority to get a recommendation."
budget_filtered_df = df[df["Monthly Cost Living (USD)"] <= max_budget]
budget_warning = ""
if len(budget_filtered_df) == 0:
budget_filtered_df = df
budget_warning = "⚠️ No cities match your budget. Showing best options regardless of cost.\n\n"
recommendations = []
if "Best Quality of Life" in priorities:
top_city = budget_filtered_df.sort_values("Quality of Life", ascending=False).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Quality of Life: {top_city['Quality of Life']}\n"
message += f"Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
if "Fastest Internet" in priorities:
top_city = budget_filtered_df.sort_values("Internet Speed (Mbps)", ascending=False).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Internet Speed: {top_city['Internet Speed (Mbps)']} Mbps\n"
message += f"Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
if "Most Affordable" in priorities:
top_city = budget_filtered_df.sort_values("Monthly Cost Living (USD)", ascending=True).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Quality of Life: {top_city['Quality of Life']}, Internet: {top_city['Internet Speed (Mbps)']} Mbps\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
if "Balance of All Factors" in priorities:
df_temp = budget_filtered_df.copy()
df_temp['quality_norm'] = df_temp['Quality of Life'] / 10
df_temp['internet_norm'] = df_temp['Internet Speed (Mbps)'] / 400
df_temp['cost_norm'] = 1 - (df_temp['Monthly Cost Living (USD)'] / 4000)
df_temp['composite_score'] = (df_temp['quality_norm'] + df_temp['internet_norm'] + df_temp['cost_norm']) / 3
top_city = df_temp.sort_values("composite_score", ascending=False).iloc[0]
terrain_emoji = terrain_emoji_map.get(top_city['Terrain'], top_city['Terrain']).split()[0]
message = f"{terrain_emoji} {top_city['City']}, {top_city['Country']} - Balanced Choice\n"
message += f"Quality: {top_city['Quality of Life']}, Internet: {top_city['Internet Speed (Mbps)']} Mbps, Cost: ${top_city['Monthly Cost Living (USD)']}\n"
message += f"Key Feature: {top_city['Key Feature']}"
recommendations.append(message)
return budget_warning + "\n\n".join(recommendations)
find_btn.click(recommend_location, inputs=[priority, cost_slider], outputs=recommendation)
cost_slider.change(recommend_location, inputs=[priority, cost_slider], outputs=recommendation)
demo.launch()