hoh2000 commited on
Commit
a6520c9
·
verified ·
1 Parent(s): 1b4898c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -4
app.py CHANGED
@@ -1,6 +1,27 @@
1
- from diffusers import DiffusionPipeline
 
 
 
 
 
2
 
3
- pipe = DiffusionPipeline.from_pretrained("cloudqi/cqi_text_to_image_pt_v0")
 
 
4
 
5
- prompt = "Gato em alta qualidade na neve\n"
6
- image = pipe(prompt).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+ from PIL import Image
5
+ import base64
6
+ import io
7
 
8
+ # Load model and tokenizer
9
+ model = AutoModelForCausalLM.from_pretrained("cloudqi/cqi_text_to_image_pt_v0")
10
+ tokenizer = AutoTokenizer.from_pretrained("cloudqi/cqi_text_to_image_pt_v0")
11
 
12
+ def generate_image(prompt):
13
+ inputs = tokenizer(prompt, return_tensors="pt")
14
+ output_ids = model.generate(**inputs, max_length=256)
15
+ output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
16
+
17
+ # Decode base64 to image
18
+ if "data:image/png;base64," in output_str:
19
+ b64_img = output_str.split("data:image/png;base64,")[1]
20
+ image_data = base64.b64decode(b64_img)
21
+ image = Image.open(io.BytesIO(image_data))
22
+ return image
23
+ return "No image found in output."
24
+
25
+ demo = gr.Interface(fn=generate_image, inputs="text", outputs="image", title="CQI Text-to-Image")
26
+
27
+ demo.launch()