File size: 10,943 Bytes
688190f efc4cf7 29708eb 688190f efc4cf7 29708eb 688190f 29708eb 688190f 3a69134 688190f 29708eb 688190f 01b2099 688190f 01b2099 688190f 29708eb 01b2099 29708eb 01b2099 29708eb 247fde3 01b2099 247fde3 01b2099 688190f 29708eb 688190f 29708eb 01b2099 29708eb 688190f 29708eb 688190f 29708eb 688190f 29708eb 688190f 29708eb 01b2099 29708eb 01b2099 29708eb 01b2099 29708eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Update imports
import streamlit as st
import requests
import json
import webbrowser
from io import StringIO
from bs4 import BeautifulSoup
import google.generativeai as genai
import os
# Initialize session state
if 'original_resume' not in st.session_state:
st.session_state['original_resume'] = None
if 'keywords' not in st.session_state:
st.session_state['keywords'] = None
if 'tailored_resume' not in st.session_state:
st.session_state['tailored_resume'] = None
def scrape_website(url):
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
return soup.get_text()
def trim_text(text, max_length=3000):
"""Trim text while preserving important content"""
if len(text) <= max_length:
return text
# Keep first and last parts
half_length = max_length // 2
return text[:half_length] + "..." + text[-half_length:]
# Configure Gemini
def init_gemini(api_key):
genai.configure(api_key=api_key)
generation_config = {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "application/json",
}
return genai.GenerativeModel(
model_name="gemini-2.0-flash-exp",
generation_config=generation_config
)
def extract_keywords(job_description, model):
prompt = f"""Extract key ATS keywords from job posting. Return JSON with 'high', 'medium', 'low' arrays:
{job_description}"""
response = model.generate_content(prompt)
return json.loads(response.text)
def validate_resume_schema(resume_data, original_schema):
"""Validate and enforce resume schema consistency"""
def get_schema_structure(data):
if isinstance(data, dict):
return {k: get_schema_structure(v) for k, v in data.items()}
elif isinstance(data, list):
return [get_schema_structure(data[0])] if data else []
else:
return type(data).__name__
original_structure = get_schema_structure(original_schema)
new_structure = get_schema_structure(resume_data)
return original_structure == new_structure
def adapt_resume(resume_data, keywords, job_description, model, max_retries=3):
original_schema = resume_data.copy()
for attempt in range(max_retries):
try:
prompt = f"""As a CV expert, optimize the provided resume JSON for the target role.
Enhance sections (summary, experience, volunteer, interests, awards, projects, skills) by incorporating provided keywords:
- High priority (3x weight)
- Medium priority (2x weight)
- Low priority (1x weight)
Rules:
- Keep all original facts and information
- Maintain exact JSON structure and all existing keys
- Use natural language from the keywords list
- Do not add fictional content
Base Schema: {json.dumps(original_schema)}
Keywords: {json.dumps(keywords)}
Job Description: {job_description}"""
response = model.generate_content(prompt)
tailored_resume = json.loads(response.text)
if validate_resume_schema(tailored_resume, original_schema):
return tailored_resume
except Exception as e:
if attempt == max_retries - 1:
raise e
raise ValueError("Schema validation failed")
def calculate_resume_match(resume_data, keywords):
"""Calculate match score between resume and keywords"""
resume_text = json.dumps(resume_data).lower()
total_score = 0
matches = {'high': [], 'medium': [], 'low': []}
# Weight multipliers for different priority levels
weights = {"high": 3, "medium": 2, "low": 1}
# Ensure keywords has the expected structure
if not all(key in keywords for key in ['high', 'medium', 'low']):
raise ValueError("Keywords must contain 'high', 'medium', and 'low' arrays")
for priority in ['high', 'medium', 'low']:
priority_score = 0
priority_matches = []
for word in keywords[priority]:
word = word.lower()
if word in resume_text:
priority_score += weights[priority]
priority_matches.append(word)
matches[priority] = priority_matches
total_score += priority_score
# Normalize score to 0-100
max_possible = sum(len(keywords[p]) * weights[p] for p in ['high', 'medium', 'low'])
normalized_score = (total_score / max_possible * 100) if max_possible > 0 else 0
return normalized_score, matches
def create_match_visualization(original_score, tailored_score, keywords, original_matches, tailored_matches):
"""Create visualization showing resume match comparison"""
# Overall score comparison
st.markdown("### π Resume Match Analysis")
# Score metrics side by side
col1, col2 = st.columns(2)
with col1:
st.metric(
"Original Resume Match Score",
f"{original_score:.1f}%"
)
with col2:
st.metric(
"Tailored Resume Match Score",
f"{tailored_score:.1f}%",
delta=f"+{tailored_score - original_score:.1f}%"
)
# Keyword analysis by priority
st.markdown("### π― Keyword Matches")
tabs = st.tabs(["High Priority π΄", "Medium Priority π‘", "Low Priority π’"])
for idx, priority in enumerate(['high', 'medium', 'low']):
with tabs[idx]:
col1, col2 = st.columns(2)
orig_matches = set(original_matches[priority])
new_matches = set(tailored_matches[priority])
added = new_matches - orig_matches
# Original matches
with col1:
st.markdown("#### Original Matching Keywords")
if orig_matches:
for keyword in orig_matches:
st.markdown(f"β `{keyword}`")
else:
st.info("No matches found")
# New matches
with col2:
st.markdown("#### Added the following Keywords")
if added:
for keyword in added:
st.markdown(f"β `{keyword}`")
else:
st.info("No new matches")
# Page config
st.set_page_config(page_title="Resume Tailor", page_icon="π", layout="wide")
# Header
st.title("π Curriculum Customization Tool")
st.markdown("### Transform your resume for your dream job")
# Sidebar with API key
with st.sidebar:
st.markdown("### π How to Use")
st.markdown("""
1. **Prepare Your Resume**:
- Create a basic resume at [rxresu.me](https://rxresu.me)
- Export it as JSON (not PDF)
2. **Get Job Details**:
- Copy the job posting URL
3. **Use the Tool**:
- Upload your resume JSON
- Paste the job URL
- Click 'Tailor Resume'
4. **Final Steps**:
- Download the tailored JSON
- Import back to rxresu.me
- Export as PDF for application
""")
st.markdown("### βΉοΈ About")
st.markdown("""
This tool uses Google's Gemini model to optimize your resume for ATS systems.
π Open Source: Feel free to modify and adapt this tool to your needs.
The source code is available and customizable.
π§ Contact: For questions or suggestions, reach out to:
[email protected]
""")
# Disclaimer
st.warning("""
β οΈ **Disclaimer**
This tool is for educational purposes only.
AI-based tools can produce unexpected results.
Always verify the output before using.
""")
api_key = st.secrets["google_api_key"]
if not api_key:
st.error("API key not found in secrets. Please add your API key to the secrets.")
# Main input section
col1, col2 = st.columns(2)
with col1:
job_url = st.text_input("Job Posting URL", placeholder="https://...")
with col2:
resume_file = st.file_uploader("Upload Resume (JSON)", type="json")
if resume_file:
resume_str = StringIO(resume_file.getvalue().decode("utf-8"))
st.session_state['original_resume'] = json.load(resume_str)
# Process button
if st.button("π― Tailor Resume", type="primary", use_container_width=True):
if job_url and api_key and resume_file:
try:
with st.status("π Processing...") as status:
# Initialize Gemini
model = init_gemini(api_key)
# Rest of the processing remains the same, just using model instead of client
status.update(label="Analyzing job posting...")
job_description = scrape_website(job_url)
keywords = extract_keywords(job_description, model)
st.session_state['keywords'] = keywords
status.update(label="Tailoring resume...")
tailored_resume = adapt_resume(
st.session_state['original_resume'],
keywords,
job_description,
model
)
st.session_state['tailored_resume'] = tailored_resume
status.update(label="β
Done!", state="complete")
# Results section
st.markdown("---")
st.markdown("## π Results")
# Calculate and display scores
original_score, original_matches = calculate_resume_match(
st.session_state['original_resume'],
st.session_state['keywords']
)
tailored_score, tailored_matches = calculate_resume_match(
st.session_state['tailored_resume'],
st.session_state['keywords']
)
create_match_visualization(
original_score,
tailored_score,
st.session_state['keywords'],
original_matches,
tailored_matches
)
# Download section
st.markdown("### π₯ Download")
if st.download_button(
"β¬οΈ Download Tailored Resume",
data=json.dumps(st.session_state['tailored_resume'], indent=4),
file_name="tailored_resume.json",
mime="application/json",
use_container_width=True
):
webbrowser.open_new_tab("https://rxresu.me/")
st.info("π Resume Builder opened in new tab")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.error("Please provide all required inputs") |