File size: 1,998 Bytes
08baf5e 3c788af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
#PublicModel
import gradio as gr
from transformers import Wav2Vec2Processor
import torch
import librosa
import numpy as np
from huggingface_hub import hf_hub_download
class Wav2Vec2Classifier(torch.nn.Module):
def __init__(self, num_classes):
super().__init__()
from transformers import Wav2Vec2Model
self.wav2vec2 = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
self.dropout = torch.nn.Dropout(0.3)
self.classifier = torch.nn.Linear(self.wav2vec2.config.hidden_size, num_classes)
def forward(self, input_values, attention_mask=None):
outputs = self.wav2vec2(input_values, attention_mask=attention_mask)
pooled_output = outputs.last_hidden_state.mean(dim=1)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
processor = Wav2Vec2Processor.from_pretrained("hrid0yyy/BornoNet")
num_classes = 50
model = Wav2Vec2Classifier(num_classes=num_classes)
model.load_state_dict(torch.load(hf_hub_download("hrid0yyy/BornoNet", "pytorch_model.bin"), map_location="cpu"))
model.eval()
le_classes = np.load(hf_hub_download("hrid0yyy/BornoNet", "label_encoder_classes.npy"), allow_pickle=True)
def predict(audio):
try:
y, sr = librosa.load(audio, sr=16000)
inputs = processor(y, sampling_rate=sr, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values)
predicted = le_classes[torch.argmax(logits, dim=1).item()]
return f"Predicted character: {predicted}"
except Exception as e:
return f"Error processing audio: {str(e)}"
iface = gr.Interface(
fn=predict,
inputs=gr.Audio(type="filepath", label="Upload an MP3 file (16kHz)"),
outputs=gr.Textbox(label="Prediction"),
title="BornoNet: Bengali Speech Recognition",
description="Upload a 16kHz MP3 file to classify Bengali speech into characters (e.g., ত, অ, ক)."
)
iface.launch() |