File size: 1,998 Bytes
08baf5e
3c788af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#PublicModel
import gradio as gr
from transformers import Wav2Vec2Processor
import torch
import librosa
import numpy as np
from huggingface_hub import hf_hub_download

class Wav2Vec2Classifier(torch.nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        from transformers import Wav2Vec2Model
        self.wav2vec2 = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
        self.dropout = torch.nn.Dropout(0.3)
        self.classifier = torch.nn.Linear(self.wav2vec2.config.hidden_size, num_classes)
    
    def forward(self, input_values, attention_mask=None):
        outputs = self.wav2vec2(input_values, attention_mask=attention_mask)
        pooled_output = outputs.last_hidden_state.mean(dim=1)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        return logits

processor = Wav2Vec2Processor.from_pretrained("hrid0yyy/BornoNet")
num_classes = 50
model = Wav2Vec2Classifier(num_classes=num_classes)
model.load_state_dict(torch.load(hf_hub_download("hrid0yyy/BornoNet", "pytorch_model.bin"), map_location="cpu"))
model.eval()
le_classes = np.load(hf_hub_download("hrid0yyy/BornoNet", "label_encoder_classes.npy"), allow_pickle=True)

def predict(audio):
    try:
        y, sr = librosa.load(audio, sr=16000)
        inputs = processor(y, sampling_rate=sr, return_tensors="pt", padding=True)
        with torch.no_grad():
            logits = model(inputs.input_values)
            predicted = le_classes[torch.argmax(logits, dim=1).item()]
        return f"Predicted character: {predicted}"
    except Exception as e:
        return f"Error processing audio: {str(e)}"

iface = gr.Interface(
    fn=predict,
    inputs=gr.Audio(type="filepath", label="Upload an MP3 file (16kHz)"),
    outputs=gr.Textbox(label="Prediction"),
    title="BornoNet: Bengali Speech Recognition",
    description="Upload a 16kHz MP3 file to classify Bengali speech into characters (e.g., ত, অ, ক)."
)
iface.launch()