File size: 1,639 Bytes
6e96eae
 
 
 
e838cdf
582e4de
6e96eae
 
 
 
 
6771aca
6e96eae
 
 
 
 
 
 
 
 
2f6898e
 
 
 
582e4de
2f6898e
 
 
 
 
 
 
 
 
 
582e4de
15a68f9
 
 
 
 
 
3e35adf
2abda3d
 
15a68f9
3e35adf
 
15a68f9
6e96eae
 
15a68f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import huggingface_hub as hf_hub
import time
import openvino_genai as ov_genai
import numpy as np
import gradio as gr
import re

# 下載模型
model_id = "OpenVINO/Qwen3-0.6B-int4-ov"
model_path = "Qwen3-0.6B-int4-ov"

hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False)

# 建立推理管線
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
tokenizer = pipe.get_tokenizer()
tokenizer.set_chat_template(tokenizer.chat_template)


def generate_response(prompt):
    try:
        generated = pipe.generate([prompt], max_length=1024)
        tokenpersec=f'{generated.perf_metrics.get_throughput().mean:.2f}'
        match = re.search(r"<think>(.*?)</think>(.*)", generated, re.DOTALL)
    
        if match:
            thinking = match.group(1).strip()
            content = match.group(2).strip()
        else:
            thinking = "模型沒有提供思考過程"
            content = generated  # 或者 generated.text, 取決於 generated 物件的屬性
    
        return tokenpersec, thinking, content
    except Exception as e:
        return "發生錯誤", "發生錯誤", f"生成回應時發生錯誤:{e}"
    

# 建立 Gradio 介面
demo = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=5, label="輸入提示 (Prompt)"),
    outputs=[
        gr.Textbox(label="tokens/sec"),        
        gr.Textbox(label="思考過程"),
        gr.Textbox(label="最終回應")
    ],
    title="Qwen3-0.6B-int4-ov ",
    description="基於 Qwen3-0.6B-int4-ov 推理應用,支援思考過程分離與 GUI。"
)

if __name__ == "__main__":
    demo.launch()