qwen3_test / app.py
hsuwill000's picture
Update app.py
71ae563 verified
raw
history blame
1.61 kB
import huggingface_hub as hf_hub
import time
import openvino_genai as ov_genai
import numpy as np
import gradio as gr
import re
# 下載模型
model_id = "OpenVINO/Qwen3-0.6B-int4-ov"
model_path = "Qwen3-0.6B-int4-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False)
# 建立推理管線
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
tokenizer = pipe.get_tokenizer()
tokenizer.set_chat_template(tokenizer.chat_template)
def generate_response(prompt):
full_response = "" # 用於儲存完整的回應
def streamer(subword):
nonlocal full_response
full_response += subword
yield full_response # 使用 yield 使 streamer 成為生成器
return ov_genai.StreamingStatus.RUNNING # 返回 StreamingStatus.RUNNING
try:
# 使用流式生成
generated = pipe.generate(prompt, streamer=streamer, max_new_tokens=100)
tokenpersec = f'{generated.perf_metrics.get_throughput().mean:.2f}' # 恢復原本計算 tokenpersec 的方式
return tokenpersec, full_response
except Exception as e:
return "發生錯誤", "發生錯誤", f"生成回應時發生錯誤:{e}"
# 建立 Gradio 介面
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=5, label="輸入提示 (Prompt)"),
outputs=[
gr.Textbox(label="tokens/sec"),
gr.Textbox(label="回應"),
],
title="Qwen3-0.6B-int4-ov ",
description="基於 Qwen3-0.6B-int4-ov 推理應用,支援思考過程分離與 GUI。"
)
if __name__ == "__main__":
demo.launch()