File size: 8,424 Bytes
0cfb4a5
d4fba6d
0dec378
 
d4fba6d
0dec378
0a67e9a
 
a484b84
d4fba6d
0dec378
 
d4fba6d
3c2650c
0dec378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2650c
 
 
 
 
3d2ee8a
0cfb4a5
 
 
 
 
 
 
 
3c2650c
 
d4fba6d
0cfb4a5
 
 
 
 
 
 
d4fba6d
0cfb4a5
d4fba6d
 
 
 
 
 
 
 
0cfb4a5
 
 
 
 
3c2650c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a484b84
1c144e4
d4fba6d
79024bb
6c31c17
 
1c144e4
6c31c17
 
3c2650c
 
 
 
 
 
 
 
 
d4fba6d
0a67e9a
79024bb
d4fba6d
3c2650c
 
 
 
289d5f1
b5806de
d4fba6d
0dec378
 
b206729
3c2650c
 
0dec378
d4fba6d
0dec378
d4fba6d
0dec378
d4fba6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2650c
d4fba6d
 
 
 
 
 
 
3c2650c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4fba6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2650c
 
 
 
 
 
 
 
 
 
d4fba6d
3c2650c
d4fba6d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image

translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "XLabs-AI/flux-RealismLora"
MAX_SEED = np.iinfo(np.int32).max

CSS = """
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

def enable_lora(lora_add):
    if not lora_add:
        return basemodel
    else:
        return lora_add

async def generate_image(
    prompt:str,
    model:str,
    lora_word:str,
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1
):

    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    print(f'prompt:{prompt}')
    
    text = str(translator.translate(prompt, 'English')) + "," + lora_word

    client = AsyncInferenceClient()
    try:
        image = await client.text_to_image(
            prompt=text,
            height=height,
            width=width,
            guidance_scale=scales,
            num_inference_steps=steps,
            model=model,
        )
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return image, seed

async def upscale_image(
    prompt:str,
    img_path:str,
    upscale_factor:int=2,
    controlnet_scale:float=0.6,
    controlnet_decay:float=1,
    condition_scale:int=6,
    tile_width:int=112,
    tile_height:int=144,
    denoise_strength:float=0.35,
    num_inference_steps:int=18,
    solver:str="DDIM"
):
    client = AsyncInferenceClient()
    try:
        result = await client.image_to_image(
            prompt=prompt,
            input_image=img_path,
            negative_prompt="",
            seed=42,
            upscale_factor=upscale_factor,
            controlnet_scale=controlnet_scale,
            controlnet_decay=controlnet_decay,
            condition_scale=condition_scale,
            tile_width=tile_width,
            tile_height=tile_height,
            denoise_strength=denoise_strength,
            num_inference_steps=num_inference_steps,
            solver=solver,
            model="finegrain/finegrain-image-enhancer",
        )
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return result[0]

async def gen(
    prompt:str,
    lora_add:str="",
    lora_word:str="",
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1,
    upscale_factor:int=2,
    controlnet_scale:float=0.6,
    controlnet_decay:float=1,
    condition_scale:int=6,
    tile_width:int=112,
    tile_height:int=144,
    denoise_strength:float=0.35,
    num_inference_steps:int=18,
    solver:str="DDIM",
    progress=gr.Progress(track_tqdm=True)
):
    model = enable_lora(lora_add)
    print(model)
    image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
    upscale_img = await upscale_image(prompt, image, upscale_factor, controlnet_scale, controlnet_decay, condition_scale, tile_width, tile_height, denoise_strength, num_inference_steps, solver)
    return image, upscale_img, seed

with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<h1><center>Flux Lab Light</center></h1>")
    gr.HTML("<p><center>Powered By HF Inference API</center></p>")
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                img = gr.Image(type="filepath", label='Flux Image', height=600)
                upscale_img = gr.Image(type="filepath", label='Upscale Image', height=600)
            with gr.Row():
                prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
                sendBtn = gr.Button(scale=1, variant='primary')
        with gr.Accordion("Advanced Options", open=True):
            with gr.Column(scale=1):
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=1280,
                    step=8,
                    value=768,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=1280,
                    step=8,
                    value=1024,
                )
                scales = gr.Slider(
                    label="Guidance",
                    minimum=3.5,
                    maximum=7,
                    step=0.1,
                    value=3.5,
                )
                steps = gr.Slider(
                    label="Steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=24,
                )
                seed = gr.Slider(
                    label="Seeds",
                    minimum=-1,
                    maximum=MAX_SEED,
                    step=1,
                    value=-1,
                )
                lora_add = gr.Textbox(
                    label="Add Flux LoRA",
                    info="Copy the HF LoRA model name here",
                    lines=1,
                    value="XLabs-AI/flux-RealismLora"
                )
                lora_word = gr.Textbox(
                    label="Add Flux LoRA Trigger Word",
                    info="Add the Trigger Word",
                    lines=1,
                    value="",
                )
                upscale_factor = gr.Radio(
                    label="UpScale Factor",
                    choices=[
                        2, 3, 4
                    ],
                    value=2,
                    scale=2
                )
                controlnet_scale = gr.Slider(
                    label="ControlNet Scale",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.6
                )
                controlnet_decay = gr.Slider(
                    label="ControlNet Decay",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=1
                )
                condition_scale = gr.Slider(
                    label="Condition Scale",
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=6
                )
                tile_width = gr.Slider(
                    label="Tile Width",
                    minimum=64,
                    maximum=256,
                    step=16,
                    value=112
                )
                tile_height = gr.Slider(
                    label="Tile Height",
                    minimum=64,
                    maximum=256,
                    step=16,
                    value=144
                )
                denoise_strength = gr.Slider(
                    label="Denoise Strength",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.35
                )
                num_inference_steps = gr.Slider(
                    label="Num Inference Steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=18
                )
                solver = gr.Radio(
                    label="Solver",
                    choices=[
                        "DDIM", "DPM"
                    ],
                    value="DDIM",
                    scale=2
                )

    gr.on(
        triggers=[
            prompt.submit,
            sendBtn.click,
        ],
        fn=gen,
        inputs=[
            prompt,
            lora_add,
            lora_word,
            width, 
            height, 
            scales, 
            steps, 
            seed,
            upscale_factor,
            controlnet_scale,
            controlnet_decay,
            condition_scale,
            tile_width,
            tile_height,
            denoise_strength,
            num_inference_steps,
            solver
        ],
        outputs=[img, upscale_img, seed]
    )
    
if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)