|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
import torch.nn.functional as F |
|
|
|
|
|
def swish(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_filters, |
|
out_filters, |
|
use_conv_shortcut=False, |
|
use_agn=False, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.in_filters = in_filters |
|
self.out_filters = out_filters |
|
self.use_conv_shortcut = use_conv_shortcut |
|
self.use_agn = use_agn |
|
|
|
if not use_agn: |
|
self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6) |
|
self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6) |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False |
|
) |
|
self.conv2 = nn.Conv2d( |
|
out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False |
|
) |
|
|
|
if in_filters != out_filters: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = nn.Conv2d( |
|
in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False |
|
) |
|
else: |
|
self.nin_shortcut = nn.Conv2d( |
|
in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False |
|
) |
|
|
|
def forward(self, x, **kwargs): |
|
residual = x |
|
|
|
if not self.use_agn: |
|
x = self.norm1(x) |
|
x = swish(x) |
|
x = self.conv1(x) |
|
x = self.norm2(x) |
|
x = swish(x) |
|
x = self.conv2(x) |
|
if self.in_filters != self.out_filters: |
|
if self.use_conv_shortcut: |
|
residual = self.conv_shortcut(residual) |
|
else: |
|
residual = self.nin_shortcut(residual) |
|
|
|
return x + residual |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
in_channels, |
|
num_res_blocks, |
|
z_channels, |
|
ch_mult=(1, 2, 2, 4), |
|
resolution, |
|
double_z=False, |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.z_channels = z_channels |
|
self.resolution = resolution |
|
|
|
self.num_res_blocks = num_res_blocks |
|
self.num_blocks = len(ch_mult) |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, ch, kernel_size=(3, 3), padding=1, bias=False |
|
) |
|
|
|
|
|
self.down = nn.ModuleList() |
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
for i_level in range(self.num_blocks): |
|
block = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks): |
|
block.append(ResBlock(block_in, block_out)) |
|
block_in = block_out |
|
|
|
down = nn.Module() |
|
down.block = block |
|
if i_level < self.num_blocks - 1: |
|
down.downsample = nn.Conv2d( |
|
block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1 |
|
) |
|
|
|
self.down.append(down) |
|
|
|
|
|
self.mid_block = nn.ModuleList() |
|
for res_idx in range(self.num_res_blocks): |
|
self.mid_block.append(ResBlock(block_in, block_in)) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6) |
|
self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=(1, 1)) |
|
|
|
def forward(self, x): |
|
|
|
|
|
x = self.conv_in(x) |
|
for i_level in range(self.num_blocks): |
|
for i_block in range(self.num_res_blocks): |
|
x = self.down[i_level].block[i_block](x) |
|
|
|
if i_level < self.num_blocks - 1: |
|
x = self.down[i_level].downsample(x) |
|
|
|
|
|
for res in range(self.num_res_blocks): |
|
x = self.mid_block[res](x) |
|
|
|
x = self.norm_out(x) |
|
x = swish(x) |
|
x = self.conv_out(x) |
|
|
|
return x |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
in_channels, |
|
num_res_blocks, |
|
z_channels, |
|
ch_mult=(1, 2, 2, 4), |
|
resolution, |
|
double_z=False, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.ch = ch |
|
self.num_blocks = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
block_in = ch * ch_mult[self.num_blocks - 1] |
|
|
|
self.conv_in = nn.Conv2d( |
|
z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True |
|
) |
|
|
|
self.mid_block = nn.ModuleList() |
|
for res_idx in range(self.num_res_blocks): |
|
self.mid_block.append(ResBlock(block_in, block_in)) |
|
|
|
self.up = nn.ModuleList() |
|
|
|
self.adaptive = nn.ModuleList() |
|
|
|
for i_level in reversed(range(self.num_blocks)): |
|
block = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in)) |
|
for i_block in range(self.num_res_blocks): |
|
|
|
|
|
|
|
block.append(ResBlock(block_in, block_out)) |
|
block_in = block_out |
|
|
|
up = nn.Module() |
|
up.block = block |
|
if i_level > 0: |
|
up.upsample = Upsampler(block_in) |
|
self.up.insert(0, up) |
|
|
|
self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6) |
|
|
|
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1) |
|
|
|
def forward(self, z): |
|
|
|
style = z.clone() |
|
|
|
z = self.conv_in(z) |
|
|
|
|
|
for res in range(self.num_res_blocks): |
|
z = self.mid_block[res](z) |
|
|
|
|
|
for i_level in reversed(range(self.num_blocks)): |
|
|
|
z = self.adaptive[i_level](z, style) |
|
for i_block in range(self.num_res_blocks): |
|
z = self.up[i_level].block[i_block](z) |
|
|
|
if i_level > 0: |
|
z = self.up[i_level].upsample(z) |
|
|
|
z = self.norm_out(z) |
|
z = swish(z) |
|
z = self.conv_out(z) |
|
|
|
return z |
|
|
|
|
|
def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor: |
|
"""Depth-to-Space DCR mode (depth-column-row) core implementation. |
|
|
|
Args: |
|
x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported. |
|
block_size (int): block side size |
|
""" |
|
|
|
if x.dim() < 3: |
|
raise ValueError( |
|
f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions" |
|
) |
|
c, h, w = x.shape[-3:] |
|
|
|
s = block_size**2 |
|
if c % s != 0: |
|
raise ValueError( |
|
f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels" |
|
) |
|
|
|
outer_dims = x.shape[:-3] |
|
|
|
|
|
x = x.view(-1, block_size, block_size, c // s, h, w) |
|
|
|
|
|
x = x.permute(0, 3, 4, 1, 5, 2) |
|
|
|
|
|
x = x.contiguous().view(*outer_dims, c // s, h * block_size, w * block_size) |
|
|
|
return x |
|
|
|
|
|
class Upsampler(nn.Module): |
|
def __init__(self, dim, dim_out=None): |
|
super().__init__() |
|
dim_out = dim * 4 |
|
self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1) |
|
self.depth2space = depth_to_space |
|
|
|
def forward(self, x): |
|
""" |
|
input_image: [B C H W] |
|
""" |
|
out = self.conv1(x) |
|
out = self.depth2space(out, block_size=2) |
|
return out |
|
|
|
|
|
class AdaptiveGroupNorm(nn.Module): |
|
def __init__(self, z_channel, in_filters, num_groups=32, eps=1e-6): |
|
super().__init__() |
|
self.gn = nn.GroupNorm( |
|
num_groups=32, num_channels=in_filters, eps=eps, affine=False |
|
) |
|
|
|
self.gamma = nn.Linear(z_channel, in_filters) |
|
self.beta = nn.Linear(z_channel, in_filters) |
|
self.eps = eps |
|
|
|
def forward(self, x, quantizer): |
|
B, C, _, _ = x.shape |
|
|
|
|
|
scale = rearrange(quantizer, "b c h w -> b c (h w)") |
|
scale = scale.var(dim=-1) + self.eps |
|
scale = scale.sqrt() |
|
scale = self.gamma(scale).view(B, C, 1, 1) |
|
|
|
|
|
bias = rearrange(quantizer, "b c h w -> b c (h w)") |
|
bias = bias.mean(dim=-1) |
|
bias = self.beta(bias).view(B, C, 1, 1) |
|
|
|
x = self.gn(x) |
|
x = scale * x + bias |
|
|
|
return x |
|
|