VTBench / src /vqvaes /open_magvit2 /improved_model.py
huaweilin's picture
update
14ce5a9
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
def swish(x):
# swish
return x * torch.sigmoid(x)
class ResBlock(nn.Module):
def __init__(
self,
in_filters,
out_filters,
use_conv_shortcut=False,
use_agn=False,
) -> None:
super().__init__()
self.in_filters = in_filters
self.out_filters = out_filters
self.use_conv_shortcut = use_conv_shortcut
self.use_agn = use_agn
if not use_agn: ## agn is GroupNorm likewise skip it if has agn before
self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6)
self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6)
self.conv1 = nn.Conv2d(
in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False
)
self.conv2 = nn.Conv2d(
out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False
)
if in_filters != out_filters:
if self.use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(
in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False
)
else:
self.nin_shortcut = nn.Conv2d(
in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False
)
def forward(self, x, **kwargs):
residual = x
if not self.use_agn:
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_filters != self.out_filters:
if self.use_conv_shortcut:
residual = self.conv_shortcut(residual)
else:
residual = self.nin_shortcut(residual)
return x + residual
class Encoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
in_channels,
num_res_blocks,
z_channels,
ch_mult=(1, 2, 2, 4),
resolution,
double_z=False,
):
super().__init__()
self.in_channels = in_channels
self.z_channels = z_channels
self.resolution = resolution
self.num_res_blocks = num_res_blocks
self.num_blocks = len(ch_mult)
self.conv_in = nn.Conv2d(
in_channels, ch, kernel_size=(3, 3), padding=1, bias=False
)
## construct the model
self.down = nn.ModuleList()
in_ch_mult = (1,) + tuple(ch_mult)
for i_level in range(self.num_blocks):
block = nn.ModuleList()
block_in = ch * in_ch_mult[i_level] # [1, 1, 2, 2, 4]
block_out = ch * ch_mult[i_level] # [1, 2, 2, 4]
for _ in range(self.num_res_blocks):
block.append(ResBlock(block_in, block_out))
block_in = block_out
down = nn.Module()
down.block = block
if i_level < self.num_blocks - 1:
down.downsample = nn.Conv2d(
block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1
)
self.down.append(down)
### mid
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
### end
self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6)
self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=(1, 1))
def forward(self, x):
## down
x = self.conv_in(x)
for i_level in range(self.num_blocks):
for i_block in range(self.num_res_blocks):
x = self.down[i_level].block[i_block](x)
if i_level < self.num_blocks - 1:
x = self.down[i_level].downsample(x)
## mid
for res in range(self.num_res_blocks):
x = self.mid_block[res](x)
x = self.norm_out(x)
x = swish(x)
x = self.conv_out(x)
return x
class Decoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
in_channels,
num_res_blocks,
z_channels,
ch_mult=(1, 2, 2, 4),
resolution,
double_z=False,
) -> None:
super().__init__()
self.ch = ch
self.num_blocks = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
block_in = ch * ch_mult[self.num_blocks - 1]
self.conv_in = nn.Conv2d(
z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True
)
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
self.up = nn.ModuleList()
self.adaptive = nn.ModuleList()
for i_level in reversed(range(self.num_blocks)):
block = nn.ModuleList()
block_out = ch * ch_mult[i_level]
self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in))
for i_block in range(self.num_res_blocks):
# if i_block == 0:
# block.append(ResBlock(block_in, block_out, use_agn=True))
# else:
block.append(ResBlock(block_in, block_out))
block_in = block_out
up = nn.Module()
up.block = block
if i_level > 0:
up.upsample = Upsampler(block_in)
self.up.insert(0, up)
self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1)
def forward(self, z):
style = z.clone() # for adaptive groupnorm
z = self.conv_in(z)
## mid
for res in range(self.num_res_blocks):
z = self.mid_block[res](z)
## upsample
for i_level in reversed(range(self.num_blocks)):
### pass in each resblock first adaGN
z = self.adaptive[i_level](z, style)
for i_block in range(self.num_res_blocks):
z = self.up[i_level].block[i_block](z)
if i_level > 0:
z = self.up[i_level].upsample(z)
z = self.norm_out(z)
z = swish(z)
z = self.conv_out(z)
return z
def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor:
"""Depth-to-Space DCR mode (depth-column-row) core implementation.
Args:
x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported.
block_size (int): block side size
"""
# check inputs
if x.dim() < 3:
raise ValueError(
f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions"
)
c, h, w = x.shape[-3:]
s = block_size**2
if c % s != 0:
raise ValueError(
f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels"
)
outer_dims = x.shape[:-3]
# splitting two additional dimensions from the channel dimension
x = x.view(-1, block_size, block_size, c // s, h, w)
# putting the two new dimensions along H and W
x = x.permute(0, 3, 4, 1, 5, 2)
# merging the two new dimensions with H and W
x = x.contiguous().view(*outer_dims, c // s, h * block_size, w * block_size)
return x
class Upsampler(nn.Module):
def __init__(self, dim, dim_out=None):
super().__init__()
dim_out = dim * 4
self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1)
self.depth2space = depth_to_space
def forward(self, x):
"""
input_image: [B C H W]
"""
out = self.conv1(x)
out = self.depth2space(out, block_size=2)
return out
class AdaptiveGroupNorm(nn.Module):
def __init__(self, z_channel, in_filters, num_groups=32, eps=1e-6):
super().__init__()
self.gn = nn.GroupNorm(
num_groups=32, num_channels=in_filters, eps=eps, affine=False
)
# self.lin = nn.Linear(z_channels, in_filters * 2)
self.gamma = nn.Linear(z_channel, in_filters)
self.beta = nn.Linear(z_channel, in_filters)
self.eps = eps
def forward(self, x, quantizer):
B, C, _, _ = x.shape
# quantizer = F.adaptive_avg_pool2d(quantizer, (1, 1))
### calcuate var for scale
scale = rearrange(quantizer, "b c h w -> b c (h w)")
scale = scale.var(dim=-1) + self.eps # not unbias
scale = scale.sqrt()
scale = self.gamma(scale).view(B, C, 1, 1)
### calculate mean for bias
bias = rearrange(quantizer, "b c h w -> b c (h w)")
bias = bias.mean(dim=-1)
bias = self.beta(bias).view(B, C, 1, 1)
x = self.gn(x)
x = scale * x + bias
return x