huaweilin's picture
update
14ce5a9
"""Vector quantizer.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Reference:
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vqvae/quantize.py
https://github.com/google-research/magvit/blob/main/videogvt/models/vqvae.py
https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/distributions/distributions.py
https://github.com/lyndonzheng/CVQ-VAE/blob/main/quantise.py
"""
from typing import Mapping, Text, Tuple
import torch
from einops import rearrange
from accelerate.utils.operations import gather
from torch.cuda.amp import autocast
class VectorQuantizer(torch.nn.Module):
def __init__(
self,
codebook_size: int = 1024,
token_size: int = 256,
commitment_cost: float = 0.25,
use_l2_norm: bool = False,
clustering_vq: bool = False,
):
super().__init__()
self.codebook_size = codebook_size
self.token_size = token_size
self.commitment_cost = commitment_cost
self.embedding = torch.nn.Embedding(codebook_size, token_size)
self.embedding.weight.data.uniform_(-1.0 / codebook_size, 1.0 / codebook_size)
self.use_l2_norm = use_l2_norm
self.clustering_vq = clustering_vq
if clustering_vq:
self.decay = 0.99
self.register_buffer("embed_prob", torch.zeros(self.codebook_size))
# Ensure quantization is performed using f32
@autocast(enabled=False)
def forward(
self, z: torch.Tensor
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
z = z.float()
z = rearrange(z, "b c h w -> b h w c").contiguous()
z_flattened = rearrange(z, "b h w c -> (b h w) c")
unnormed_z_flattened = z_flattened
if self.use_l2_norm:
z_flattened = torch.nn.functional.normalize(z_flattened, dim=-1)
embedding = torch.nn.functional.normalize(self.embedding.weight, dim=-1)
else:
embedding = self.embedding.weight
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(embedding**2, dim=1)
- 2 * torch.einsum("bd,dn->bn", z_flattened, embedding.T)
)
min_encoding_indices = torch.argmin(d, dim=1) # num_ele
z_quantized = self.get_codebook_entry(min_encoding_indices).view(z.shape)
if self.use_l2_norm:
z = torch.nn.functional.normalize(z, dim=-1)
# compute loss for embedding
commitment_loss = self.commitment_cost * torch.mean(
(z_quantized.detach() - z) ** 2
)
codebook_loss = torch.mean((z_quantized - z.detach()) ** 2)
if self.clustering_vq and self.training:
with torch.no_grad():
# Gather distance matrix from all GPUs.
encoding_indices = gather(min_encoding_indices)
if len(min_encoding_indices.shape) != 1:
raise ValueError(
f"min_encoding_indices in a wrong shape, {min_encoding_indices.shape}"
)
# Compute and update the usage of each entry in the codebook.
encodings = torch.zeros(
encoding_indices.shape[0], self.codebook_size, device=z.device
)
encodings.scatter_(1, encoding_indices.unsqueeze(1), 1)
avg_probs = torch.mean(encodings, dim=0)
self.embed_prob.mul_(self.decay).add_(avg_probs, alpha=1 - self.decay)
# Closest sampling to update the codebook.
all_d = gather(d)
all_unnormed_z_flattened = gather(unnormed_z_flattened).detach()
if all_d.shape[0] != all_unnormed_z_flattened.shape[0]:
raise ValueError(
"all_d and all_unnormed_z_flattened have different length"
+ f"{all_d.shape}, {all_unnormed_z_flattened.shape}"
)
indices = torch.argmin(all_d, dim=0)
random_feat = all_unnormed_z_flattened[indices]
# Decay parameter based on the average usage.
decay = (
torch.exp(
-(self.embed_prob * self.codebook_size * 10) / (1 - self.decay)
- 1e-3
)
.unsqueeze(1)
.repeat(1, self.token_size)
)
self.embedding.weight.data = (
self.embedding.weight.data * (1 - decay) + random_feat * decay
)
loss = commitment_loss + codebook_loss
# preserve gradients
z_quantized = z + (z_quantized - z).detach()
# reshape back to match original input shape
z_quantized = rearrange(z_quantized, "b h w c -> b c h w").contiguous()
result_dict = dict(
quantizer_loss=loss,
commitment_loss=commitment_loss,
codebook_loss=codebook_loss,
min_encoding_indices=min_encoding_indices.view(
z_quantized.shape[0], z_quantized.shape[2], z_quantized.shape[3]
),
)
return z_quantized, result_dict
def get_codebook_entry(self, indices):
if len(indices.shape) == 1:
z_quantized = self.embedding(indices)
elif len(indices.shape) == 2:
z_quantized = torch.einsum("bd,dn->bn", indices, self.embedding.weight)
else:
raise NotImplementedError
if self.use_l2_norm:
z_quantized = torch.nn.functional.normalize(z_quantized, dim=-1)
return z_quantized
class DiagonalGaussianDistribution(object):
@autocast(enabled=False)
def __init__(self, parameters, deterministic=False):
"""Initializes a Gaussian distribution instance given the parameters.
Args:
parameters (torch.Tensor): The parameters for the Gaussian distribution. It is expected
to be in shape [B, 2 * C, *], where B is batch size, and C is the embedding dimension.
First C channels are used for mean and last C are used for logvar in the Gaussian distribution.
deterministic (bool): Whether to use deterministic sampling. When it is true, the sampling results
is purely based on mean (i.e., std = 0).
"""
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters.float(), 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(
device=self.parameters.device
)
@autocast(enabled=False)
def sample(self):
x = self.mean.float() + self.std.float() * torch.randn(self.mean.shape).to(
device=self.parameters.device
)
return x
@autocast(enabled=False)
def mode(self):
return self.mean
@autocast(enabled=False)
def kl(self):
if self.deterministic:
return torch.Tensor([0.0])
else:
return 0.5 * torch.sum(
torch.pow(self.mean.float(), 2)
+ self.var.float()
- 1.0
- self.logvar.float(),
dim=[1, 2],
)