Spaces:
Runtime error
Runtime error
| import os | |
| import re | |
| import glob | |
| import time | |
| from collections import defaultdict | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_core.documents import Document | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| # PyMuPDF library | |
| try: | |
| import fitz # PyMuPDF | |
| PYMUPDF_AVAILABLE = True | |
| print("✅ PyMuPDF library available") | |
| except ImportError: | |
| PYMUPDF_AVAILABLE = False | |
| print("⚠️ PyMuPDF library is not installed. Install with: pip install PyMuPDF") | |
| # PDF processing utilities | |
| import pytesseract | |
| from PIL import Image | |
| from pdf2image import convert_from_path | |
| import pdfplumber | |
| from pymupdf4llm import LlamaMarkdownReader | |
| # -------------------------------- | |
| # Log Output | |
| # -------------------------------- | |
| def log(msg): | |
| print(f"[{time.strftime('%H:%M:%S')}] {msg}") | |
| # -------------------------------- | |
| # Text Cleaning Function | |
| # -------------------------------- | |
| def clean_text(text): | |
| return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text) | |
| def apply_corrections(text): | |
| corrections = { | |
| 'º©': 'info', 'Ì': 'of', '½': 'operation', 'Ã': '', '©': '', | |
| '’': "'", '“': '"', 'â€': '"' | |
| } | |
| for k, v in corrections.items(): | |
| text = text.replace(k, v) | |
| return text | |
| # -------------------------------- | |
| # HWPX Processing (Section-wise Processing Only) | |
| # -------------------------------- | |
| def load_hwpx(file_path): | |
| """Loading HWPX file (using XML parsing method only)""" | |
| import zipfile | |
| import xml.etree.ElementTree as ET | |
| import chardet | |
| log(f"Starting HWPX section-wise processing: {file_path}") | |
| start = time.time() | |
| documents = [] | |
| try: | |
| with zipfile.ZipFile(file_path, 'r') as zip_ref: | |
| file_list = zip_ref.namelist() | |
| section_files = [f for f in file_list | |
| if f.startswith('Contents/section') and f.endswith('.xml')] | |
| section_files.sort() # Sort by section0.xml, section1.xml order | |
| log(f"Found section files: {len(section_files)} files") | |
| for section_idx, section_file in enumerate(section_files): | |
| with zip_ref.open(section_file) as xml_file: | |
| raw = xml_file.read() | |
| encoding = chardet.detect(raw)['encoding'] or 'utf-8' | |
| try: | |
| text = raw.decode(encoding) | |
| except UnicodeDecodeError: | |
| text = raw.decode("cp949", errors="replace") | |
| tree = ET.ElementTree(ET.fromstring(text)) | |
| root = tree.getroot() | |
| # Find text without namespace | |
| t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't'] | |
| body_text = "" | |
| for elem in t_elements: | |
| if elem.text: | |
| body_text += clean_text(elem.text) + " " | |
| # Set page metadata to empty | |
| page_value = "" | |
| if body_text.strip(): | |
| documents.append(Document( | |
| page_content=apply_corrections(body_text), | |
| metadata={ | |
| "source": file_path, | |
| "filename": os.path.basename(file_path), | |
| "type": "hwpx_body", | |
| "page": page_value, | |
| "total_sections": len(section_files) | |
| } | |
| )) | |
| log(f"Section text extraction complete (chars: {len(body_text)})") | |
| # Find tables | |
| table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table'] | |
| if table_elements: | |
| table_text = "" | |
| for table_idx, table in enumerate(table_elements): | |
| table_text += f"[Table {table_idx + 1}]\n" | |
| rows = [elem for elem in table.iter() if elem.tag.endswith('}tr') or elem.tag == 'tr'] | |
| for row in rows: | |
| row_text = [] | |
| cells = [elem for elem in row.iter() if elem.tag.endswith('}tc') or elem.tag == 'tc'] | |
| for cell in cells: | |
| cell_texts = [] | |
| for t_elem in cell.iter(): | |
| if (t_elem.tag.endswith('}t') or t_elem.tag == 't') and t_elem.text: | |
| cell_texts.append(clean_text(t_elem.text)) | |
| row_text.append(" ".join(cell_texts)) | |
| if row_text: | |
| table_text += "\t".join(row_text) + "\n" | |
| if table_text.strip(): | |
| documents.append(Document( | |
| page_content=apply_corrections(table_text), | |
| metadata={ | |
| "source": file_path, | |
| "filename": os.path.basename(file_path), | |
| "type": "hwpx_table", | |
| "page": page_value, | |
| "total_sections": len(section_files) | |
| } | |
| )) | |
| log(f"Table extraction complete") | |
| # Find images | |
| if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']: | |
| documents.append(Document( | |
| page_content="[Image included]", | |
| metadata={ | |
| "source": file_path, | |
| "filename": os.path.basename(file_path), | |
| "type": "hwpx_image", | |
| "page": page_value, | |
| "total_sections": len(section_files) | |
| } | |
| )) | |
| log(f"Image found") | |
| except Exception as e: | |
| log(f"HWPX processing error: {e}") | |
| duration = time.time() - start | |
| # Print summary of document information | |
| if documents: | |
| log(f"Number of extracted documents: {len(documents)}") | |
| log(f"HWPX processing complete: {file_path} ⏱️ {duration:.2f}s, total {len(documents)} documents") | |
| return documents | |
| # -------------------------------- | |
| # PDF Processing Functions (same as before) | |
| # -------------------------------- | |
| def run_ocr_on_image(image: Image.Image, lang='kor+eng'): | |
| return pytesseract.image_to_string(image, lang=lang) | |
| def extract_images_with_ocr(pdf_path, lang='kor+eng'): | |
| try: | |
| images = convert_from_path(pdf_path) | |
| page_ocr_data = {} | |
| for idx, img in enumerate(images): | |
| page_num = idx + 1 | |
| text = run_ocr_on_image(img, lang=lang) | |
| if text.strip(): | |
| page_ocr_data[page_num] = text.strip() | |
| return page_ocr_data | |
| except Exception as e: | |
| print(f"Image OCR failed: {e}") | |
| return {} | |
| def extract_tables_with_pdfplumber(pdf_path): | |
| page_table_data = {} | |
| try: | |
| with pdfplumber.open(pdf_path) as pdf: | |
| for i, page in enumerate(pdf.pages): | |
| page_num = i + 1 | |
| tables = page.extract_tables() | |
| table_text = "" | |
| for t_index, table in enumerate(tables): | |
| if table: | |
| table_text += f"[Table {t_index+1}]\n" | |
| for row in table: | |
| row_text = "\t".join(cell if cell else "" for cell in row) | |
| table_text += row_text + "\n" | |
| if table_text.strip(): | |
| page_table_data[page_num] = table_text.strip() | |
| return page_table_data | |
| except Exception as e: | |
| print(f"Table extraction failed: {e}") | |
| return {} | |
| def extract_body_text_with_pages(pdf_path): | |
| page_body_data = {} | |
| try: | |
| pdf_processor = LlamaMarkdownReader() | |
| docs = pdf_processor.load_data(file_path=pdf_path) | |
| combined_text = "" | |
| for d in docs: | |
| if isinstance(d, dict) and "text" in d: | |
| combined_text += d["text"] | |
| elif hasattr(d, "text"): | |
| combined_text += d.text | |
| if combined_text.strip(): | |
| chars_per_page = 2000 | |
| start = 0 | |
| page_num = 1 | |
| while start < len(combined_text): | |
| end = start + chars_per_page | |
| if end > len(combined_text): | |
| end = len(combined_text) | |
| page_text = combined_text[start:end] | |
| if page_text.strip(): | |
| page_body_data[page_num] = page_text.strip() | |
| page_num += 1 | |
| if end == len(combined_text): | |
| break | |
| start = end - 100 | |
| except Exception as e: | |
| print(f"Body extraction failed: {e}") | |
| return page_body_data | |
| def load_pdf_with_metadata(pdf_path): | |
| """Extracts page-specific information from a PDF file""" | |
| log(f"Starting PDF page-wise processing: {pdf_path}") | |
| start = time.time() | |
| # First, check the actual number of pages using PyPDFLoader | |
| try: | |
| from langchain_community.document_loaders import PyPDFLoader | |
| loader = PyPDFLoader(pdf_path) | |
| pdf_pages = loader.load() | |
| actual_total_pages = len(pdf_pages) | |
| log(f"Actual page count as verified by PyPDFLoader: {actual_total_pages}") | |
| except Exception as e: | |
| log(f"PyPDFLoader page count verification failed: {e}") | |
| actual_total_pages = 1 | |
| try: | |
| page_tables = extract_tables_with_pdfplumber(pdf_path) | |
| except Exception as e: | |
| page_tables = {} | |
| print(f"Table extraction failed: {e}") | |
| try: | |
| page_ocr = extract_images_with_ocr(pdf_path) | |
| except Exception as e: | |
| page_ocr = {} | |
| print(f"Image OCR failed: {e}") | |
| try: | |
| page_body = extract_body_text_with_pages(pdf_path) | |
| except Exception as e: | |
| page_body = {} | |
| print(f"Body extraction failed: {e}") | |
| duration = time.time() - start | |
| log(f"PDF page-wise processing complete: {pdf_path} ⏱️ {duration:.2f}s") | |
| # Set the total number of pages based on the actual number of pages | |
| all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys()) | |
| if all_pages: | |
| max_extracted_page = max(all_pages) | |
| # Use the greater of the actual and extracted page numbers | |
| total_pages = max(actual_total_pages, max_extracted_page) | |
| else: | |
| total_pages = actual_total_pages | |
| log(f"Final total page count set to: {total_pages}") | |
| docs = [] | |
| for page_num in sorted(all_pages): | |
| if page_num in page_tables and page_tables[page_num].strip(): | |
| docs.append(Document( | |
| page_content=clean_text(apply_corrections(page_tables[page_num])), | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "table", | |
| "page": page_num, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| log(f"Page {page_num}: Table extraction complete") | |
| if page_num in page_body and page_body[page_num].strip(): | |
| docs.append(Document( | |
| page_content=clean_text(apply_corrections(page_body[page_num])), | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "body", | |
| "page": page_num, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| log(f"Page {page_num}: Body extraction complete") | |
| if page_num in page_ocr and page_ocr[page_num].strip(): | |
| docs.append(Document( | |
| page_content=clean_text(apply_corrections(page_ocr[page_num])), | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "ocr", | |
| "page": page_num, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| log(f"Page {page_num}: OCR extraction complete") | |
| if not docs: | |
| docs.append(Document( | |
| page_content="[Content extraction failed]", | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "error", | |
| "page": 1, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| # Print summary of page information | |
| if docs: | |
| page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')] | |
| if page_numbers: | |
| log(f"Extracted page range: {min(page_numbers)} ~ {max(page_numbers)}") | |
| log(f"PDF documents with extracted pages: {len(docs)} documents (total {total_pages} pages)") | |
| return docs | |
| # -------------------------------- | |
| # Document Loading and Splitting | |
| # -------------------------------- | |
| def load_documents(folder_path): | |
| documents = [] | |
| for file in glob.glob(os.path.join(folder_path, "*.hwpx")): | |
| log(f"HWPX file found: {file}") | |
| docs = load_hwpx(file) | |
| documents.extend(docs) | |
| for file in glob.glob(os.path.join(folder_path, "*.pdf")): | |
| log(f"PDF file found: {file}") | |
| documents.extend(load_pdf_with_metadata(file)) | |
| log(f"Document loading complete! Total documents: {len(documents)}") | |
| return documents | |
| def split_documents(documents, chunk_size=800, chunk_overlap=100): | |
| log("Starting chunk splitting") | |
| splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=chunk_size, | |
| chunk_overlap=chunk_overlap, | |
| length_function=len | |
| ) | |
| chunks = [] | |
| for doc in documents: | |
| split = splitter.split_text(doc.page_content) | |
| for i, chunk in enumerate(split): | |
| enriched_chunk = f"passage: {chunk}" | |
| chunks.append(Document( | |
| page_content=enriched_chunk, | |
| metadata={**doc.metadata, "chunk_index": i} | |
| )) | |
| log(f"Chunk splitting complete: Created {len(chunks)} chunks") | |
| return chunks | |
| # -------------------------------- | |
| # Main Execution | |
| # -------------------------------- | |
| if __name__ == "__main__": | |
| folder = "dataset_test" | |
| log("PyMuPDF-based document processing started") | |
| docs = load_documents(folder) | |
| log("Document loading complete") | |
| # Page information check | |
| log("Page information summary:") | |
| page_info = {} | |
| for doc in docs: | |
| source = doc.metadata.get('source', 'unknown') | |
| page = doc.metadata.get('page', 'unknown') | |
| doc_type = doc.metadata.get('type', 'unknown') | |
| if source not in page_info: | |
| page_info[source] = {'pages': set(), 'types': set()} | |
| page_info[source]['pages'].add(page) | |
| page_info[source]['types'].add(doc_type) | |
| for source, info in page_info.items(): | |
| max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown' | |
| log(f" {os.path.basename(source)}: {max_page} pages, type: {info['types']}") | |
| chunks = split_documents(docs) | |
| log("E5-Large-Instruct embedding preparation") | |
| embedding_model = HuggingFaceEmbeddings( | |
| model_name="intfloat/e5-large-v2", | |
| model_kwargs={"device": "cuda"} | |
| ) | |
| vectorstore = FAISS.from_documents(chunks, embedding_model) | |
| vectorstore.save_local("vector_db") | |
| log(f"Total number of documents: {len(docs)}") | |
| log(f"Total number of chunks: {len(chunks)}") | |
| log("FAISS save complete: vector_db") | |
| # Sample output with page information | |
| log("\nSample including actual page information:") | |
| for i, chunk in enumerate(chunks[:5]): | |
| meta = chunk.metadata | |
| log(f" Chunk {i+1}: {meta.get('type')} | Page {meta.get('page')} | {os.path.basename(meta.get('source', 'unknown'))}") |