File size: 7,372 Bytes
76030db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
76030db
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
76030db
 
504df0f
 
76030db
 
 
504df0f
76030db
 
 
 
 
504df0f
76030db
 
 
 
 
 
 
504df0f
76030db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Codingo - AI Powered Smart Recruitment System

This repository contains the implementation of Codingo, an AI-powered online recruitment platform designed to automate and enhance the hiring process through a virtual HR assistant named LUNA.

## Project Overview

Codingo addresses the challenges of traditional recruitment processes by offering:
- Automated CV screening and skill-based shortlisting
- AI-led interviews through the virtual assistant LUNA
- Real-time cheating detection during assessments
- Gamified practice tools for candidates
- Secure administration interface for hiring managers

## Getting Started

This guide outlines the development process, starting with local model training before moving to AWS deployment.

### Prerequisites

- Python 3.8+
- pip (Python package manager)
- Git

### Development Process

We'll implement the project in phases:

#### Phase 1: Local Training and Feature Extraction (Current Phase)

This initial phase focuses on building and training the model locally before AWS deployment.

### Project Structure

```
Codingo/
β”œβ”€β”€ backend/                     # Flask API backend
β”‚   β”œβ”€β”€ app.py                   # Flask server
β”‚   β”œβ”€β”€ predict.py               # Predict using trained model
β”‚   β”œβ”€β”€ train_model.py           # Model training script
β”‚   β”œβ”€β”€ model/                   # Trained model artifacts
β”‚   β”‚   └── cv_classifier.pkl
β”‚   β”œβ”€β”€ utils/
β”‚   β”‚   β”œβ”€β”€ text_extractor.py    # PDF/DOCX to text
β”‚   β”‚   └── preprocessor.py      # Cleaning, tokenizing
β”‚
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ training.csv             # Your training dataset
β”‚   └── raw_cvs/                 # CV files (PDF/DOCX/txt)
β”‚
β”œβ”€β”€ notebooks/
β”‚   └── eda.ipynb                # Data exploration & feature work
β”‚
β”œβ”€β”€ requirements.txt             # Python dependencies
└── README.md                    # Project overview
```

## Step-by-Step Implementation Guide

### Step 1: Create Training Dataset

Start by manually collecting ~50-100 CV-like text samples with position labels.

**File:** `data/training.csv`

Example format:
```
text,position
"Experienced in Python, Flask, AWS",Backend Developer
"Built dashboards with React and TypeScript",Frontend Developer
"ML projects using pandas, scikit-learn",Data Scientist
```

### Step 2: Train Model

Implement a classifier using scikit-learn to predict job roles from CV text.

**File:** `backend/train_model.py`

```python
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
import joblib

# Load training data
df = pd.read_csv('data/training.csv')

# Define model pipeline
model = Pipeline([
    ('tfidf', TfidfVectorizer(max_features=5000, ngram_range=(1, 2))),
    ('classifier', LogisticRegression(max_iter=1000))
])

# Train model
model.fit(df['text'], df['position'])

# Save model
joblib.dump(model, 'backend/models/cv_classifier.pkl')

print("Model trained and saved successfully!")
```

### Step 3: Test Prediction Locally

Create a script to verify your model works correctly.

**File:** `backend/predict.py`

```python
import joblib
import sys


def predict_role(cv_text):
    # Load the trained model
    model = joblib.load('backend/models/cv_classifier.pkl')

    # Make prediction
    prediction = model.predict([cv_text])[0]
    confidence = max(model.predict_proba([cv_text])[0]) * 100

    return {
        'predicted_position': prediction,
        'confidence': f"{confidence:.2f}%"
    }


if __name__ == "__main__":
    if len(sys.argv) > 1:
        # Get CV text from command line argument
        cv_text = sys.argv[1]
    else:
        # Example CV text
        cv_text = "Experienced Python developer with 5 years of experience in Flask and AWS."

    result = predict_role(cv_text)
    print(f"Predicted Position: {result['predicted_position']}")
    print(f"Confidence: {result['confidence']}")
```

### Step 4: Add Text Extraction Utility

Create utilities to extract text from PDF and DOCX files.

**File:** `backend/utils/text_extractor.py`

```python
import fitz  # PyMuPDF
import docx
import os

def extract_text_from_pdf(path):
    """Extract text from PDF file."""
    doc = fitz.open(path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text.strip()

def extract_text_from_docx(path):
    """Extract text from DOCX file."""
    doc = docx.Document(path)
    text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
    return text.strip()

def extract_text(file_path):
    """Extract text from either PDF or DOCX."""
    extension = os.path.splitext(file_path)[1].lower()
    
    if extension == '.pdf':
        return extract_text_from_pdf(file_path)
    elif extension in ['.docx', '.doc']:
        return extract_text_from_docx(file_path)
    elif extension == '.txt':
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read().strip()
    else:
        raise ValueError(f"Unsupported file extension: {extension}")
```

### Step 5: Add Flask API (Simple)

Create a basic Flask API to accept CV uploads and return predictions.

**File:** `backend/app.py`

```python
from flask import Flask, request, jsonify
from utils.text_extractor import extract_text
import joblib
import os

app = Flask(__name__)
model = joblib.load("model/cv_classifier.pkl")

# Ensure directories exist
os.makedirs("data/raw_cvs", exist_ok=True)
os.makedirs("model", exist_ok=True)

@app.route("/predict", methods=["POST"])
def predict():
    if 'file' not in request.files:
        return jsonify({"error": "No file provided"}), 400
        
    file = request.files["file"]
    file_path = f"data/raw_cvs/{file.filename}"
    file.save(file_path)

    try:
        text = extract_text(file_path)
        prediction = model.predict([text])[0]
        confidence = max(model.predict_proba([text])[0]) * 100
        
        return jsonify({
            "predicted_position": prediction,
            "confidence": f"{confidence:.2f}%"
        })
    except Exception as e:
        return jsonify({"error": str(e)}), 500

if __name__ == "__main__":
    app.run(debug=True)
```

### Step 6: Install Dependencies

**File:** `requirements.txt`

```
flask
scikit-learn
pandas
joblib
PyMuPDF
python-docx
```

Run: `pip install -r requirements.txt`

## Next Steps

After completing Phase 1, we'll move to:

1. **Phase 2: Enhanced Model & NLP Features**
   - Implement BERT or DistilBERT for improved semantic understanding
   - Add skill extraction from CVs
   - Develop job-CV matching scoring

2. **Phase 3: Web Interface & Chatbot**
   - Develop user interface for admin and candidates
   - Implement LUNA virtual assistant using LangChain
   - Add interview scheduling functionality

3. **Phase 4: Video Interview & Proctoring**
   - Add video interview capabilities
   - Implement cheating detection using computer vision
   - Develop automated scoring system

4. **Phase 5: AWS Deployment**
   - Set up AWS infrastructure using Terraform
   - Deploy application to EC2/Lambda
   - Configure S3 for file storage

## Authors

- Hussein El Saadi
- Nour Ali Shaito

## Supervisor
- Dr. Ali Ezzedine

## License

This project is licensed under the MIT License - see the LICENSE file for details.