File size: 19,738 Bytes
ba72f62
10d2e39
ba72f62
10d2e39
ba72f62
 
 
 
e3fc741
 
9a7d4db
 
10d2e39
 
d8529bc
d8acd61
504df0f
 
 
 
d8acd61
504df0f
 
 
5d095b2
 
 
2445440
5d095b2
ce04e48
 
 
d8529bc
 
 
 
89511c3
 
 
 
 
 
 
 
d8529bc
 
 
 
 
 
0014151
 
 
 
d8529bc
39a4147
29cfacc
0bd189c
 
 
89511c3
 
 
29cfacc
 
 
0bd189c
 
 
 
29cfacc
 
0bd189c
29cfacc
89511c3
 
 
 
 
 
 
 
3e1e43f
 
d8529bc
 
29cfacc
3e1e43f
 
89511c3
3e1e43f
29cfacc
 
3e1e43f
29cfacc
3e1e43f
29cfacc
 
 
 
 
3e1e43f
 
 
29cfacc
 
ce7ced7
 
 
29cfacc
5420626
 
 
 
 
 
 
 
 
 
 
 
 
29cfacc
 
 
 
 
 
 
 
 
 
 
 
 
5420626
29cfacc
5420626
29cfacc
5420626
 
 
29cfacc
 
 
 
 
 
 
 
5420626
29cfacc
 
5420626
29cfacc
5420626
 
 
29cfacc
 
 
 
 
 
 
 
5420626
 
 
 
d8529bc
3e1e43f
 
29cfacc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e1e43f
29cfacc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e1e43f
29cfacc
 
0014151
d8acd61
671ea59
 
68d1258
 
 
29cfacc
671ea59
10d2e39
27994de
e3fc741
3c4bd31
 
 
 
 
 
da815dd
e3fc741
d8acd61
22b00f2
e3fc741
 
 
d8acd61
5d095b2
d8acd61
 
 
 
 
 
 
 
 
 
 
5d095b2
d8acd61
5d095b2
 
29cfacc
504df0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8acd61
504df0f
 
2ae57cb
 
2445440
 
 
 
2ae57cb
2445440
27994de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
 
2ae57cb
 
 
2445440
27994de
504df0f
2445440
504df0f
 
2445440
504df0f
 
2445440
2ae57cb
 
 
 
 
22b00f2
 
 
2ae57cb
 
d8529bc
 
 
29cfacc
d8529bc
29cfacc
 
 
 
 
 
 
d8529bc
 
29cfacc
d8529bc
29cfacc
 
d8529bc
504df0f
 
d8acd61
2445440
 
d8acd61
2445440
 
d8acd61
2445440
 
 
 
 
 
 
 
 
 
d8acd61
 
 
 
 
2ae57cb
 
 
d8acd61
 
504df0f
2ae57cb
 
 
 
22b00f2
 
 
 
 
2ae57cb
 
 
22b00f2
2ae57cb
 
504df0f
ce04e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29cfacc
ce04e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
 
29cfacc
 
 
 
 
 
 
 
 
 
 
 
d8acd61
 
29cfacc
 
 
 
 
 
 
 
22b00f2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import os
import sys

# Hugging Face safe cache
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface/hub"

# Force Flask instance path to a writable temporary folder
safe_instance_path = "/tmp/flask_instance"

# Create the safe instance path after imports
os.makedirs(safe_instance_path, exist_ok=True)

from flask import Flask, render_template, redirect, url_for, flash, request, jsonify
from flask_login import LoginManager, login_required, current_user
from werkzeug.utils import secure_filename
import sys
from datetime import datetime

# Adjust sys.path for import flexibility
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)

# Import and initialize DB
from backend.models.database import db, Job, Application, init_db
from backend.models.user import User
from backend.routes.auth import auth_bp, handle_resume_upload
from backend.routes.interview_api import interview_api
# Import additional utilities
import re
import json

# -----------------------------------------------------------------------------
# Chatbot setup
#
# The chatbot uses a local vector database (Chroma) to search the
# ``chatbot/chatbot.txt`` knowledge base.  Retrieved passages are fed to
# a lightweight conversational model from Hugging Face (see
# ``init_hf_model`` below).  To avoid the expensive model and database
# initialisation on every request, embeddings and the vector collection are
# loaded lazily the first time a chat query is processed.  Subsequent
# requests reuse the same global objects.  See ``init_chatbot`` and
# ``get_chatbot_response`` for implementation details.

# Paths for the chatbot knowledge base and persistent vector store.  We
# compute these relative to the current file so that the app can be deployed
# anywhere without needing to change configuration.  The ``chroma_db``
# directory will be created automatically by the Chroma client if it does not
# exist.
import shutil

# Remove any old unwritable Chroma DB path from previous versions
shutil.rmtree("/app/chatbot/chroma_db", ignore_errors=True)
CHATBOT_TXT_PATH = os.path.join(current_dir, 'chatbot', 'chatbot.txt')
CHATBOT_DB_DIR = "/tmp/chroma_db"

# -----------------------------------------------------------------------------
# Hugging Face model configuration
#
# The chatbot uses a small conversational model hosted on Hugging Face.  To
# allow easy experimentation, the model name can be overridden via the
# ``HF_CHATBOT_MODEL`` environment variable.  If unset, we fall back to
# ``microsoft/DialoGPT-medium`` which provides better conversational quality
# than blenderbot for our use case.
HF_MODEL_NAME = os.getenv("HF_CHATBOT_MODEL", "microsoft/DialoGPT-medium")

# Global Hugging Face model and tokenizer.  These variables remain ``None``
# until ``init_hf_model()`` is called.  They are reused across all chatbot
# requests to prevent repeatedly loading the large model into memory.
_hf_model = None
_hf_tokenizer = None

def init_hf_model():
    """
    Initialise the Hugging Face conversational model and tokenizer.

    This function loads the specified ``HF_MODEL_NAME`` model and its
    corresponding tokenizer.  The model is moved to GPU if available,
    otherwise it runs on CPU.  Subsequent calls return immediately if
    the model and tokenizer have already been instantiated.
    """
    global _hf_model, _hf_tokenizer
    if _hf_model is not None and _hf_tokenizer is not None:
        return

    from transformers import AutoModelForCausalLM, AutoTokenizer
    import torch

    model_name = HF_MODEL_NAME
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    print(f"Loading model {model_name} on device {device}")

    # Load tokenizer and model from Hugging Face
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
    
    # Set pad token to eos token if not set
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    _hf_model = model
    _hf_tokenizer = tokenizer
    print(f"Model loaded successfully on {device}")

_chatbot_embedder = None
_chatbot_collection = None

def init_chatbot():
    """Initialise the Chroma vector DB with chatbot.txt content."""
    global _chatbot_embedder, _chatbot_collection
    if _chatbot_embedder is not None and _chatbot_collection is not None:
        return
    
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    from sentence_transformers import SentenceTransformer
    import chromadb
    from chromadb.config import Settings
    import os

    os.makedirs(CHATBOT_DB_DIR, exist_ok=True)

    # Read and parse the chatbot knowledge base
    try:
        with open(CHATBOT_TXT_PATH, encoding="utf-8") as f:
            text = f.read()
    except FileNotFoundError:
        print(f"Warning: {CHATBOT_TXT_PATH} not found, using default content")
        text = """
        Codingo is an AI-powered recruitment platform designed to streamline job applications, 
        candidate screening, and hiring. We make hiring smarter, faster, and fairer through 
        automation and intelligent recommendations.
        """

    # Split text into chunks for vector search
    splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=100)
    docs = [doc.strip() for doc in splitter.split_text(text) if doc.strip()]

    # Initialize embedder
    embedder = SentenceTransformer("all-MiniLM-L6-v2")
    embeddings = embedder.encode(docs, show_progress_bar=False, batch_size=32)

    # Initialize Chroma client
    client = chromadb.Client(Settings(
        persist_directory=CHATBOT_DB_DIR, 
        anonymized_telemetry=False,
        is_persistent=True
    ))
    
    # Get or create collection
    collection = client.get_or_create_collection("chatbot")
    
    # Check if collection is empty and populate if needed
    try:
        existing = collection.get(limit=1)
        if not existing.get("documents"):
            raise ValueError("Empty Chroma DB")
    except Exception:
        # Add documents to collection
        ids = [f"doc_{i}" for i in range(len(docs))]
        collection.add(
            documents=docs, 
            embeddings=embeddings.tolist(), 
            ids=ids
        )
        print(f"Added {len(docs)} documents to Chroma DB")

    _chatbot_embedder = embedder
    _chatbot_collection = collection

def get_chatbot_response(query: str) -> str:
    """Generate a reply to the user's query using Chroma + Hugging Face model."""
    try:
        init_chatbot()
        init_hf_model()

        # Safety: prevent empty input
        if not query or not query.strip():
            return "Please type a question about the Codingo platform."

        embedder = _chatbot_embedder
        collection = _chatbot_collection
        model = _hf_model
        tokenizer = _hf_tokenizer
        device = model.device

        # Retrieve context from Chroma
        query_embedding = embedder.encode([query])[0]
        results = collection.query(
            query_embeddings=[query_embedding.tolist()], 
            n_results=3
        )
        retrieved_docs = results.get("documents", [[]])[0] if results else []
        context = "\n".join(retrieved_docs[:3])  # Limit context to top 3 results

        # Build conversational prompt
        system_instruction = (
            "You are LUNA AI, a helpful assistant for the Codingo recruitment platform. "
            "Use the provided context to answer questions about Codingo. "
            "If the question is not related to Codingo, politely redirect the conversation. "
            "Keep responses concise and friendly."
        )

        # Format prompt for DialoGPT
        prompt = f"{system_instruction}\n\nContext:\n{context}\n\nUser: {query}\nLUNA AI:"

        # Tokenize with proper truncation
        inputs = tokenizer.encode(
            prompt,
            return_tensors="pt",
            truncation=True,
            max_length=512,
            padding=True
        ).to(device)

        # Generate response
        with torch.no_grad():
            output_ids = model.generate(
                inputs,
                max_length=inputs.shape[1] + 150,
                num_beams=3,
                do_sample=True,
                temperature=0.7,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                early_stopping=True
            )

        # Decode response
        response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
        
        # Extract only the bot's response
        if "LUNA AI:" in response:
            response = response.split("LUNA AI:")[-1].strip()
        elif prompt in response:
            response = response.replace(prompt, "").strip()
        
        # Fallback if response is empty
        if not response:
            response = "I'm here to help you with questions about the Codingo platform. What would you like to know?"

        return response

    except Exception as e:
        print(f"Chatbot error: {str(e)}")
        return "I'm having trouble processing your request. Please try again or ask about Codingo's features, job matching, or how to use the platform."

# Initialize Flask app
app = Flask(
    __name__,
    static_folder='backend/static',
    static_url_path='/static',
    template_folder='backend/templates',
    instance_path=safe_instance_path
)

app.config['SECRET_KEY'] = 'saadi'

# Cookie configuration for Hugging Face Spaces
app.config['SESSION_COOKIE_SAMESITE'] = 'None'
app.config['SESSION_COOKIE_SECURE'] = True
app.config['REMEMBER_COOKIE_SAMESITE'] = 'None'
app.config['REMEMBER_COOKIE_SECURE'] = True

# Configure the database connection
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/codingo.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

# Create necessary directories in writable locations
os.makedirs('/tmp/static/audio', exist_ok=True)
os.makedirs('/tmp/temp', exist_ok=True)

# Initialize DB with app
init_db(app)

# Flask-Login setup
login_manager = LoginManager()
login_manager.login_view = 'auth.login'
login_manager.init_app(app)

@login_manager.user_loader
def load_user(user_id):
    return db.session.get(User, int(user_id))

# Register blueprints
app.register_blueprint(auth_bp)
app.register_blueprint(interview_api, url_prefix="/api")

# Routes
@app.route('/')
def index():
    return render_template('index.html')

@app.route('/jobs')
def jobs():
    all_jobs = Job.query.order_by(Job.date_posted.desc()).all()
    return render_template('jobs.html', jobs=all_jobs)

@app.route('/job/<int:job_id>')
def job_detail(job_id):
    job = Job.query.get_or_404(job_id)
    return render_template('job_detail.html', job=job)

@app.route('/apply/<int:job_id>', methods=['GET', 'POST'])
@login_required
def apply(job_id):
    job = Job.query.get_or_404(job_id)
    if request.method == 'POST':
        file = request.files.get('resume')
        features, error, filepath = handle_resume_upload(file)

        if error:
            flash("Resume upload failed. Please try again.", "danger")
            return render_template('apply.html', job=job)

        def parse_entries(raw_value: str):
            import re
            entries = []
            if raw_value:
                for item in re.split(r'[\n,;]+', raw_value):
                    item = item.strip()
                    if item:
                        entries.append(item)
            return entries

        skills_input = request.form.get('skills', '')
        experience_input = request.form.get('experience', '')
        education_input = request.form.get('education', '')

        manual_features = {
            "skills": parse_entries(skills_input),
            "experience": parse_entries(experience_input),
            "education": parse_entries(education_input)
        }

        application = Application(
            job_id=job_id,
            user_id=current_user.id,
            name=current_user.username,
            email=current_user.email,
            resume_path=filepath,
            extracted_features=json.dumps(manual_features)
        )

        db.session.add(application)
        db.session.commit()

        flash('Your application has been submitted successfully!', 'success')
        return redirect(url_for('jobs'))

    return render_template('apply.html', job=job)

@app.route('/my_applications')
@login_required
def my_applications():
    applications = Application.query.filter_by(
        user_id=current_user.id
    ).order_by(Application.date_applied.desc()).all()
    return render_template('my_applications.html', applications=applications)

# Chatbot API endpoint
@app.route('/chatbot', methods=['POST'])
def chatbot_endpoint():
    """Handle chatbot queries from the frontend."""
    try:
        data = request.get_json(silent=True) or {}
        user_input = str(data.get('message', '')).strip()
        
        if not user_input:
            return jsonify({"error": "Empty message"}), 400
        
        # Get chatbot response
        reply = get_chatbot_response(user_input)
        return jsonify({"response": reply})
        
    except Exception as exc:
        print(f"Chatbot endpoint error: {exc}", file=sys.stderr)
        return jsonify({"error": "I'm having trouble right now. Please try again."}), 500

@app.route('/parse_resume', methods=['POST'])
def parse_resume():
    file = request.files.get('resume')
    features, error, filepath = handle_resume_upload(file)

    if error:
        return {"error": "Error processing resume. Please try again."}, 400

    if not features:
        return {
            "name": "",
            "email": "",
            "mobile_number": "",
            "skills": [],
            "experience": [],
            "education": [],
            "summary": ""
        }, 200

    response = {
        "name": features.get('name', ''),
        "email": features.get('email', ''),
        "mobile_number": features.get('mobile_number', ''),
        "skills": features.get('skills', []),
        "experience": features.get('experience', []),
        "education": features.get('education', []),
        "summary": features.get('summary', '')
    }
    return response, 200

@app.route("/interview/<int:job_id>")
@login_required
def interview_page(job_id):
    job = Job.query.get_or_404(job_id)
    application = Application.query.filter_by(
        user_id=current_user.id, 
        job_id=job_id
    ).first()
    
    if not application or not application.extracted_features:
        flash("Please apply for this job and upload your resume first.", "warning")
        return redirect(url_for('job_detail', job_id=job_id))
    
    cv_data = json.loads(application.extracted_features)
    return render_template("interview.html", job=job, cv=cv_data)

@app.route('/post_job', methods=['GET', 'POST'])
@login_required
def post_job():
    if current_user.role not in ('recruiter', 'admin'):
        flash('You do not have permission to post jobs.', 'warning')
        return redirect(url_for('jobs'))

    if request.method == 'POST':
        role_title = request.form.get('role', '').strip()
        description = request.form.get('description', '').strip()
        seniority = request.form.get('seniority', '').strip()
        skills_input = request.form.get('skills', '').strip()
        company = request.form.get('company', '').strip()

        errors = []
        if not role_title:
            errors.append('Job title is required.')
        if not description:
            errors.append('Job description is required.')
        if not seniority:
            errors.append('Seniority level is required.')
        if not skills_input:
            errors.append('Skills are required.')
        if not company:
            errors.append('Company name is required.')

        if errors:
            for err in errors:
                flash(err, 'danger')
            return render_template('post_job.html')

        skills_list = [s.strip() for s in re.split(r'[\n,;]+', skills_input) if s.strip()]
        skills_json = json.dumps(skills_list)

        new_job = Job(
            role=role_title,
            description=description,
            seniority=seniority,
            skills=skills_json,
            company=company,
            recruiter_id=current_user.id
        )
        db.session.add(new_job)
        db.session.commit()

        flash('Job posted successfully!', 'success')
        return redirect(url_for('jobs'))

    return render_template('post_job.html')

@app.route('/dashboard')
@login_required
def dashboard():
    if current_user.role not in ('recruiter', 'admin'):
        flash('You do not have permission to access the dashboard.', 'warning')
        return redirect(url_for('index'))

    posted_jobs = Job.query.filter_by(recruiter_id=current_user.id).all()
    job_ids = [job.id for job in posted_jobs]

    candidates_with_scores = []
    if job_ids:
        candidate_apps = Application.query.filter(Application.job_id.in_(job_ids)).all()

        def compute_score(application):
            try:
                candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
                candidate_skills = candidate_features.get('skills', [])
                job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
                if not job_skills:
                    return ('Medium', 2)

                candidate_set = {s.lower() for s in candidate_skills}
                job_set = {s.lower() for s in job_skills}
                common = candidate_set & job_set
                ratio = len(common) / len(job_set) if job_set else 0

                if ratio >= 0.75:
                    return ('Excellent', 4)
                elif ratio >= 0.5:
                    return ('Good', 3)
                elif ratio >= 0.25:
                    return ('Medium', 2)
                else:
                    return ('Poor', 1)
            except Exception:
                return ('Medium', 2)

        for app_record in candidate_apps:
            score_label, score_value = compute_score(app_record)
            candidates_with_scores.append({
                'application': app_record,
                'score_label': score_label,
                'score_value': score_value
            })

        candidates_with_scores.sort(key=lambda item: item['score_value'], reverse=True)

    return render_template('dashboard.html', candidates=candidates_with_scores)

if __name__ == '__main__':
    print("Starting Codingo application...")
    
    # Import torch to check GPU availability
    try:
        import torch
        if torch.cuda.is_available():
            print(f"GPU Available: {torch.cuda.get_device_name(0)}")
            print(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
        else:
            print("No GPU available, using CPU")
    except ImportError:
        print("PyTorch not installed, chatbot will use CPU")
    
    with app.app_context():
        db.create_all()
        # Pre-initialize chatbot on startup for faster first response
        print("Initializing chatbot...")
        try:
            init_chatbot()
            init_hf_model()
            print("Chatbot initialized successfully")
        except Exception as e:
            print(f"Chatbot initialization warning: {e}")
    
    # Use port from environment or default to 7860
    port = int(os.environ.get('PORT', 7860))
    app.run(debug=True, host='0.0.0.0', port=port)