File size: 11,287 Bytes
ba72f62
2ae57cb
22b00f2
 
 
2ae57cb
 
308d699
 
2ae57cb
44441db
 
 
 
2ae57cb
 
44441db
 
2ae57cb
 
44441db
22b00f2
2ae57cb
22b00f2
 
 
308d699
 
 
 
 
 
 
 
 
22b00f2
2ae57cb
22b00f2
44441db
2ae57cb
44441db
 
 
 
 
 
 
 
308d699
44441db
 
562ec01
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae57cb
44441db
22b00f2
2ae57cb
22b00f2
308d699
2ae57cb
308d699
 
 
 
 
44441db
 
 
308d699
44441db
 
8e4e001
44441db
308d699
44441db
 
 
 
 
308d699
44441db
 
 
308d699
44441db
 
 
 
308d699
 
 
 
 
 
 
44441db
 
 
8e4e001
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44441db
308d699
44441db
 
308d699
 
 
 
44441db
 
308d699
 
 
 
 
 
 
 
44441db
308d699
44441db
 
2ae57cb
44441db
 
2ae57cb
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b00f2
308d699
2ae57cb
44441db
 
 
 
 
308d699
 
44441db
 
 
308d699
 
 
 
 
 
 
 
 
 
 
22b00f2
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae57cb
44441db
22b00f2
2ae57cb
308d699
 
2ae57cb
308d699
 
 
 
 
 
44441db
 
 
 
 
 
 
308d699
 
 
 
 
 
 
44441db
 
562ec01
308d699
 
 
 
 
 
44441db
308d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae57cb
44441db
2ae57cb
308d699
 
44441db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import json
import asyncio
import edge_tts
from faster_whisper import WhisperModel
from langchain_groq import ChatGroq
import logging
import tempfile
import shutil

# Initialize models
chat_groq_api = os.getenv("GROQ_API_KEY")
if not chat_groq_api:
    raise ValueError("GROQ_API_KEY is not set in environment variables.")
groq_llm = ChatGroq(
    temperature=0.7,
    model_name="llama-3.3-70b-versatile",
    api_key=chat_groq_api
)

# Initialize Whisper model
whisper_model = None

def load_whisper_model():
    global whisper_model
    if whisper_model is None:
        try:
            device = "cuda" if os.system("nvidia-smi") == 0 else "cpu"
            compute_type = "float16" if device == "cuda" else "int8"
            whisper_model = WhisperModel("base", device=device, compute_type=compute_type)
            logging.info(f"Whisper model loaded on {device} with {compute_type}")
        except Exception as e:
            logging.error(f"Error loading Whisper model: {e}")
            # Fallback to CPU
            whisper_model = WhisperModel("base", device="cpu", compute_type="int8")
    return whisper_model

def generate_first_question(profile, job):
    """Generate the first interview question based on profile and job"""
    try:
        prompt = f"""
        You are conducting an interview for a {job.role} position at {job.company}.
        The candidate's profile shows:
        - Skills: {profile.get('skills', [])}
        - Experience: {profile.get('experience', [])}
        - Education: {profile.get('education', [])}
        
        Generate an appropriate opening interview question that is professional and relevant.
        Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
        """
        
        response = groq_llm.invoke(prompt)
        
        # Fix: Handle AIMessage object properly
        if hasattr(response, 'content'):
            question = response.content.strip()
        elif isinstance(response, str):
            question = response.strip()
        else:
            question = str(response).strip()
            
        # Ensure we have a valid question
        if not question or len(question) < 10:
            question = "Tell me about yourself and why you're interested in this position."
            
        logging.info(f"Generated question: {question}")
        return question
        
    except Exception as e:
        logging.error(f"Error generating first question: {e}")
        return "Tell me about yourself and why you're interested in this position."

def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
    """Synchronous wrapper for edge-tts with better error handling"""
    try:
        # Ensure text is not empty
        if not text or not text.strip():
            logging.error("Empty text provided for TTS")
            return None
            
        # Ensure the directory exists and is writable
        directory = os.path.dirname(output_path)
        if not directory:
            directory = "/tmp/audio"
            output_path = os.path.join(directory, os.path.basename(output_path))
        
        os.makedirs(directory, exist_ok=True)
        
        # Test write permissions with a temporary file
        test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
        try:
            with open(test_file, 'w') as f:
                f.write("test")
            os.remove(test_file)
            logging.info(f"Directory {directory} is writable")
        except (PermissionError, OSError) as e:
            logging.error(f"Directory {directory} is not writable: {e}")
            # Fallback to /tmp
            directory = "/tmp/audio"
            output_path = os.path.join(directory, os.path.basename(output_path))
            os.makedirs(directory, exist_ok=True)
        
        async def generate_audio():
            try:
                communicate = edge_tts.Communicate(text, voice)
                await communicate.save(output_path)
                logging.info(f"TTS audio saved to: {output_path}")
            except Exception as e:
                logging.error(f"Error in async TTS generation: {e}")
                raise
        
        # Run async function in sync context
        try:
            loop = asyncio.get_event_loop()
            if loop.is_running():
                # If loop is already running, create a new one in a thread
                import threading
                import concurrent.futures
                
                def run_in_thread():
                    new_loop = asyncio.new_event_loop()
                    asyncio.set_event_loop(new_loop)
                    try:
                        new_loop.run_until_complete(generate_audio())
                    finally:
                        new_loop.close()
                
                with concurrent.futures.ThreadPoolExecutor() as executor:
                    future = executor.submit(run_in_thread)
                    future.result(timeout=30)  # 30 second timeout
            else:
                loop.run_until_complete(generate_audio())
        except RuntimeError:
            # No event loop exists
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            try:
                loop.run_until_complete(generate_audio())
            finally:
                loop.close()
        
        # Verify file was created and has content
        if os.path.exists(output_path):
            file_size = os.path.getsize(output_path)
            if file_size > 1000:  # At least 1KB for a valid audio file
                logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
                return output_path
            else:
                logging.error(f"TTS file is too small: {output_path} ({file_size} bytes)")
                return None
        else:
            logging.error(f"TTS file was not created: {output_path}")
            return None
            
    except Exception as e:
        logging.error(f"Error in TTS generation: {e}")
        return None

def convert_webm_to_wav(webm_path, wav_path):
    """Convert WebM audio to WAV using ffmpeg if available"""
    try:
        import subprocess
        result = subprocess.run([
            'ffmpeg', '-i', webm_path, '-ar', '16000', '-ac', '1', '-y', wav_path
        ], capture_output=True, text=True, timeout=30)
        
        if result.returncode == 0 and os.path.exists(wav_path) and os.path.getsize(wav_path) > 0:
            logging.info(f"Successfully converted {webm_path} to {wav_path}")
            return wav_path
        else:
            logging.error(f"FFmpeg conversion failed: {result.stderr}")
            return None
    except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
        logging.error(f"Error converting audio: {e}")
        return None

def whisper_stt(audio_path):
    """Speech-to-text using Faster-Whisper with better error handling"""
    try:
        if not audio_path or not os.path.exists(audio_path):
            logging.error(f"Audio file does not exist: {audio_path}")
            return ""
        
        # Check if file has content
        file_size = os.path.getsize(audio_path)
        if file_size == 0:
            logging.error(f"Audio file is empty: {audio_path}")
            return ""
        
        logging.info(f"Processing audio file: {audio_path} ({file_size} bytes)")
        
        # If the file is WebM, try to convert it to WAV
        if audio_path.endswith('.webm'):
            wav_path = audio_path.replace('.webm', '.wav')
            converted_path = convert_webm_to_wav(audio_path, wav_path)
            if converted_path:
                audio_path = converted_path
            else:
                logging.warning("Could not convert WebM to WAV, trying with original file")
        
        model = load_whisper_model()
        
        # Add timeout and better error handling
        try:
            segments, info = model.transcribe(
                audio_path,
                language="en",  # Specify language for better performance
                task="transcribe",
                vad_filter=True,  # Voice activity detection
                vad_parameters=dict(min_silence_duration_ms=500)
            )
            
            transcript_parts = []
            for segment in segments:
                if hasattr(segment, 'text') and segment.text.strip():
                    transcript_parts.append(segment.text.strip())
            
            transcript = " ".join(transcript_parts)
            
            if transcript:
                logging.info(f"Transcription successful: '{transcript[:100]}...'")
            else:
                logging.warning("No speech detected in audio file")
                
            return transcript.strip()
            
        except Exception as e:
            logging.error(f"Error during transcription: {e}")
            return ""
        
    except Exception as e:
        logging.error(f"Error in STT: {e}")
        return ""

def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
    """Evaluate candidate's answer with better error handling"""
    try:
        if not answer or not answer.strip():
            return {
                "score": "Poor",
                "feedback": "No answer provided."
            }
            
        prompt = f"""
        You are evaluating a candidate's answer for a {seniority} {job_role} position.
        
        Question: {question}
        Candidate Answer: {answer}
        
        Evaluate based on technical correctness, clarity, and relevance.
        Provide a brief evaluation in 1-2 sentences.
        
        Rate the answer as one of: Poor, Medium, Good, Excellent
        
        Respond in this exact format:
        Score: [Poor/Medium/Good/Excellent]
        Feedback: [Your brief feedback here]
        """
        
        response = groq_llm.invoke(prompt)
        
        # Handle AIMessage object properly
        if hasattr(response, 'content'):
            response_text = response.content.strip()
        elif isinstance(response, str):
            response_text = response.strip()
        else:
            response_text = str(response).strip()
        
        # Parse the response
        lines = response_text.split('\n')
        score = "Medium"  # default
        feedback = "Good answer, but could be more detailed."  # default
        
        for line in lines:
            line = line.strip()
            if line.startswith('Score:'):
                score = line.replace('Score:', '').strip()
            elif line.startswith('Feedback:'):
                feedback = line.replace('Feedback:', '').strip()
        
        # Ensure score is valid
        valid_scores = ["Poor", "Medium", "Good", "Excellent"]
        if score not in valid_scores:
            score = "Medium"
        
        return {
            "score": score,
            "feedback": feedback
        }
        
    except Exception as e:
        logging.error(f"Error evaluating answer: {e}")
        return {
            "score": "Medium",
            "feedback": "Unable to evaluate answer at this time."
        }