Spaces:
Paused
Paused
File size: 11,287 Bytes
ba72f62 2ae57cb 22b00f2 2ae57cb 308d699 2ae57cb 44441db 2ae57cb 44441db 2ae57cb 44441db 22b00f2 2ae57cb 22b00f2 308d699 22b00f2 2ae57cb 22b00f2 44441db 2ae57cb 44441db 308d699 44441db 562ec01 308d699 2ae57cb 44441db 22b00f2 2ae57cb 22b00f2 308d699 2ae57cb 308d699 44441db 308d699 44441db 8e4e001 44441db 308d699 44441db 308d699 44441db 308d699 44441db 308d699 44441db 8e4e001 308d699 44441db 308d699 44441db 308d699 44441db 308d699 44441db 308d699 44441db 2ae57cb 44441db 2ae57cb 308d699 22b00f2 308d699 2ae57cb 44441db 308d699 44441db 308d699 22b00f2 308d699 2ae57cb 44441db 22b00f2 2ae57cb 308d699 2ae57cb 308d699 44441db 308d699 44441db 562ec01 308d699 44441db 308d699 2ae57cb 44441db 2ae57cb 308d699 44441db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import json
import asyncio
import edge_tts
from faster_whisper import WhisperModel
from langchain_groq import ChatGroq
import logging
import tempfile
import shutil
# Initialize models
chat_groq_api = os.getenv("GROQ_API_KEY")
if not chat_groq_api:
raise ValueError("GROQ_API_KEY is not set in environment variables.")
groq_llm = ChatGroq(
temperature=0.7,
model_name="llama-3.3-70b-versatile",
api_key=chat_groq_api
)
# Initialize Whisper model
whisper_model = None
def load_whisper_model():
global whisper_model
if whisper_model is None:
try:
device = "cuda" if os.system("nvidia-smi") == 0 else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
whisper_model = WhisperModel("base", device=device, compute_type=compute_type)
logging.info(f"Whisper model loaded on {device} with {compute_type}")
except Exception as e:
logging.error(f"Error loading Whisper model: {e}")
# Fallback to CPU
whisper_model = WhisperModel("base", device="cpu", compute_type="int8")
return whisper_model
def generate_first_question(profile, job):
"""Generate the first interview question based on profile and job"""
try:
prompt = f"""
You are conducting an interview for a {job.role} position at {job.company}.
The candidate's profile shows:
- Skills: {profile.get('skills', [])}
- Experience: {profile.get('experience', [])}
- Education: {profile.get('education', [])}
Generate an appropriate opening interview question that is professional and relevant.
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
"""
response = groq_llm.invoke(prompt)
# Fix: Handle AIMessage object properly
if hasattr(response, 'content'):
question = response.content.strip()
elif isinstance(response, str):
question = response.strip()
else:
question = str(response).strip()
# Ensure we have a valid question
if not question or len(question) < 10:
question = "Tell me about yourself and why you're interested in this position."
logging.info(f"Generated question: {question}")
return question
except Exception as e:
logging.error(f"Error generating first question: {e}")
return "Tell me about yourself and why you're interested in this position."
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
"""Synchronous wrapper for edge-tts with better error handling"""
try:
# Ensure text is not empty
if not text or not text.strip():
logging.error("Empty text provided for TTS")
return None
# Ensure the directory exists and is writable
directory = os.path.dirname(output_path)
if not directory:
directory = "/tmp/audio"
output_path = os.path.join(directory, os.path.basename(output_path))
os.makedirs(directory, exist_ok=True)
# Test write permissions with a temporary file
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
try:
with open(test_file, 'w') as f:
f.write("test")
os.remove(test_file)
logging.info(f"Directory {directory} is writable")
except (PermissionError, OSError) as e:
logging.error(f"Directory {directory} is not writable: {e}")
# Fallback to /tmp
directory = "/tmp/audio"
output_path = os.path.join(directory, os.path.basename(output_path))
os.makedirs(directory, exist_ok=True)
async def generate_audio():
try:
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_path)
logging.info(f"TTS audio saved to: {output_path}")
except Exception as e:
logging.error(f"Error in async TTS generation: {e}")
raise
# Run async function in sync context
try:
loop = asyncio.get_event_loop()
if loop.is_running():
# If loop is already running, create a new one in a thread
import threading
import concurrent.futures
def run_in_thread():
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
new_loop.run_until_complete(generate_audio())
finally:
new_loop.close()
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
future.result(timeout=30) # 30 second timeout
else:
loop.run_until_complete(generate_audio())
except RuntimeError:
# No event loop exists
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(generate_audio())
finally:
loop.close()
# Verify file was created and has content
if os.path.exists(output_path):
file_size = os.path.getsize(output_path)
if file_size > 1000: # At least 1KB for a valid audio file
logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
return output_path
else:
logging.error(f"TTS file is too small: {output_path} ({file_size} bytes)")
return None
else:
logging.error(f"TTS file was not created: {output_path}")
return None
except Exception as e:
logging.error(f"Error in TTS generation: {e}")
return None
def convert_webm_to_wav(webm_path, wav_path):
"""Convert WebM audio to WAV using ffmpeg if available"""
try:
import subprocess
result = subprocess.run([
'ffmpeg', '-i', webm_path, '-ar', '16000', '-ac', '1', '-y', wav_path
], capture_output=True, text=True, timeout=30)
if result.returncode == 0 and os.path.exists(wav_path) and os.path.getsize(wav_path) > 0:
logging.info(f"Successfully converted {webm_path} to {wav_path}")
return wav_path
else:
logging.error(f"FFmpeg conversion failed: {result.stderr}")
return None
except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
logging.error(f"Error converting audio: {e}")
return None
def whisper_stt(audio_path):
"""Speech-to-text using Faster-Whisper with better error handling"""
try:
if not audio_path or not os.path.exists(audio_path):
logging.error(f"Audio file does not exist: {audio_path}")
return ""
# Check if file has content
file_size = os.path.getsize(audio_path)
if file_size == 0:
logging.error(f"Audio file is empty: {audio_path}")
return ""
logging.info(f"Processing audio file: {audio_path} ({file_size} bytes)")
# If the file is WebM, try to convert it to WAV
if audio_path.endswith('.webm'):
wav_path = audio_path.replace('.webm', '.wav')
converted_path = convert_webm_to_wav(audio_path, wav_path)
if converted_path:
audio_path = converted_path
else:
logging.warning("Could not convert WebM to WAV, trying with original file")
model = load_whisper_model()
# Add timeout and better error handling
try:
segments, info = model.transcribe(
audio_path,
language="en", # Specify language for better performance
task="transcribe",
vad_filter=True, # Voice activity detection
vad_parameters=dict(min_silence_duration_ms=500)
)
transcript_parts = []
for segment in segments:
if hasattr(segment, 'text') and segment.text.strip():
transcript_parts.append(segment.text.strip())
transcript = " ".join(transcript_parts)
if transcript:
logging.info(f"Transcription successful: '{transcript[:100]}...'")
else:
logging.warning("No speech detected in audio file")
return transcript.strip()
except Exception as e:
logging.error(f"Error during transcription: {e}")
return ""
except Exception as e:
logging.error(f"Error in STT: {e}")
return ""
def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
"""Evaluate candidate's answer with better error handling"""
try:
if not answer or not answer.strip():
return {
"score": "Poor",
"feedback": "No answer provided."
}
prompt = f"""
You are evaluating a candidate's answer for a {seniority} {job_role} position.
Question: {question}
Candidate Answer: {answer}
Evaluate based on technical correctness, clarity, and relevance.
Provide a brief evaluation in 1-2 sentences.
Rate the answer as one of: Poor, Medium, Good, Excellent
Respond in this exact format:
Score: [Poor/Medium/Good/Excellent]
Feedback: [Your brief feedback here]
"""
response = groq_llm.invoke(prompt)
# Handle AIMessage object properly
if hasattr(response, 'content'):
response_text = response.content.strip()
elif isinstance(response, str):
response_text = response.strip()
else:
response_text = str(response).strip()
# Parse the response
lines = response_text.split('\n')
score = "Medium" # default
feedback = "Good answer, but could be more detailed." # default
for line in lines:
line = line.strip()
if line.startswith('Score:'):
score = line.replace('Score:', '').strip()
elif line.startswith('Feedback:'):
feedback = line.replace('Feedback:', '').strip()
# Ensure score is valid
valid_scores = ["Poor", "Medium", "Good", "Excellent"]
if score not in valid_scores:
score = "Medium"
return {
"score": score,
"feedback": feedback
}
except Exception as e:
logging.error(f"Error evaluating answer: {e}")
return {
"score": "Medium",
"feedback": "Unable to evaluate answer at this time."
} |