File size: 9,320 Bytes
504df0f
9e72d2c
 
 
 
 
 
504df0f
9e72d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
9e72d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
9e72d2c
 
 
 
 
 
 
 
 
 
 
504df0f
9e72d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
 
9e72d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504df0f
9e72d2c
504df0f
 
 
 
 
 
9e72d2c
 
504df0f
 
9e72d2c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import re
import json
from pathlib import Path
import PyPDF2
from docx import Document
import textract

class SimpleResumeParser:
    def __init__(self):
        # Common skills keywords
        self.skills_keywords = [
            'python', 'javascript', 'java', 'c++', 'c#', 'php', 'ruby', 'go', 'rust',
            'html', 'css', 'react', 'angular', 'vue', 'node.js', 'express', 'django',
            'flask', 'spring', 'laravel', 'rails', 'asp.net', 'jquery', 'bootstrap',
            'sql', 'mysql', 'postgresql', 'mongodb', 'redis', 'elasticsearch',
            'aws', 'azure', 'gcp', 'docker', 'kubernetes', 'jenkins', 'git', 'github',
            'machine learning', 'deep learning', 'tensorflow', 'pytorch', 'scikit-learn',
            'data analysis', 'pandas', 'numpy', 'matplotlib', 'tableau', 'power bi',
            'agile', 'scrum', 'devops', 'ci/cd', 'microservices', 'api', 'rest', 'graphql'
        ]
        
        # Education keywords
        self.education_keywords = [
            'bachelor', 'master', 'phd', 'degree', 'university', 'college', 'institute',
            'computer science', 'engineering', 'mathematics', 'physics', 'chemistry',
            'business', 'mba', 'certification', 'diploma'
        ]
        
        # Experience keywords
        self.experience_keywords = [
            'experience', 'worked', 'developed', 'managed', 'led', 'created', 'built',
            'designed', 'implemented', 'maintained', 'optimized', 'improved', 'years'
        ]

    def extract_text_from_pdf(self, file_path):
        """Extract text from PDF file"""
        try:
            with open(file_path, 'rb') as file:
                reader = PyPDF2.PdfReader(file)
                text = ""
                for page in reader.pages:
                    text += page.extract_text() + "\n"
                return text
        except Exception as e:
            print(f"Error reading PDF: {e}")
            return ""

    def extract_text_from_docx(self, file_path):
        """Extract text from DOCX file"""
        try:
            doc = Document(file_path)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        except Exception as e:
            print(f"Error reading DOCX: {e}")
            return ""

    def extract_text_from_doc(self, file_path):
        """Extract text from DOC file using textract"""
        try:
            text = textract.process(file_path).decode('utf-8')
            return text
        except Exception as e:
            print(f"Error reading DOC: {e}")
            return ""

    def extract_text(self, file_path):
        """Extract text based on file extension"""
        file_extension = Path(file_path).suffix.lower()
        
        if file_extension == '.pdf':
            return self.extract_text_from_pdf(file_path)
        elif file_extension == '.docx':
            return self.extract_text_from_docx(file_path)
        elif file_extension == '.doc':
            return self.extract_text_from_doc(file_path)
        else:
            return ""

    def extract_email(self, text):
        """Extract email addresses from text"""
        email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
        emails = re.findall(email_pattern, text)
        return emails[0] if emails else ""

    def extract_phone(self, text):
        """Extract phone numbers from text"""
        phone_patterns = [
            r'\+?1?[-.\s]?$$?([0-9]{3})$$?[-.\s]?([0-9]{3})[-.\s]?([0-9]{4})',
            r'\+?([0-9]{1,3})[-.\s]?([0-9]{3,4})[-.\s]?([0-9]{3,4})[-.\s]?([0-9]{3,4})',
            r'(\d{3}[-.\s]?\d{3}[-.\s]?\d{4})',
            r'($$\d{3}$$\s?\d{3}[-.\s]?\d{4})'
        ]
        
        for pattern in phone_patterns:
            matches = re.findall(pattern, text)
            if matches:
                if isinstance(matches[0], tuple):
                    return ''.join(matches[0])
                return matches[0]
        return ""

    def extract_name(self, text):
        """Extract name from text (simple heuristic)"""
        lines = text.split('\n')
        for line in lines[:5]:  # Check first 5 lines
            line = line.strip()
            if len(line.split()) == 2 and line.replace(' ', '').isalpha():
                # Simple check: two words, all alphabetic
                if not any(keyword in line.lower() for keyword in ['resume', 'cv', 'curriculum']):
                    return line.title()
        return ""

    def extract_skills(self, text):
        """Extract skills from text"""
        text_lower = text.lower()
        found_skills = []
        
        for skill in self.skills_keywords:
            if skill.lower() in text_lower:
                found_skills.append(skill.title())
        
        # Remove duplicates and return
        return list(set(found_skills))

    def extract_education(self, text):
        """Extract education information"""
        text_lower = text.lower()
        education = []
        
        # Look for education section
        education_section = ""
        lines = text.split('\n')
        in_education_section = False
        
        for line in lines:
            line_lower = line.lower()
            if any(keyword in line_lower for keyword in ['education', 'academic', 'qualification']):
                in_education_section = True
                continue
            elif in_education_section and any(keyword in line_lower for keyword in ['experience', 'work', 'employment', 'project']):
                break
            elif in_education_section:
                education_section += line + " "
        
        # Extract degrees and institutions
        for keyword in self.education_keywords:
            if keyword in text_lower:
                # Find context around the keyword
                pattern = rf'.{{0,50}}{re.escape(keyword)}.{{0,50}}'
                matches = re.findall(pattern, text, re.IGNORECASE)
                education.extend(matches)
        
        return education[:3]  # Return top 3 education entries

    def extract_experience(self, text):
        """Extract work experience"""
        experience = []
        lines = text.split('\n')
        
        # Look for experience section
        in_experience_section = False
        current_experience = ""
        
        for line in lines:
            line_lower = line.lower()
            if any(keyword in line_lower for keyword in ['experience', 'work', 'employment', 'career']):
                in_experience_section = True
                continue
            elif in_experience_section and any(keyword in line_lower for keyword in ['education', 'skill', 'project']):
                if current_experience:
                    experience.append(current_experience.strip())
                break
            elif in_experience_section:
                if line.strip():
                    current_experience += line + " "
                elif current_experience:
                    experience.append(current_experience.strip())
                    current_experience = ""
        
        if current_experience:
            experience.append(current_experience.strip())
        
        return experience[:3]  # Return top 3 experience entries

    def extract_summary(self, text):
        """Extract summary/objective"""
        lines = text.split('\n')
        summary = ""
        
        for i, line in enumerate(lines):
            line_lower = line.lower()
            if any(keyword in line_lower for keyword in ['summary', 'objective', 'profile', 'about']):
                # Get next few lines as summary
                summary_lines = lines[i+1:i+4]
                summary = ' '.join([l.strip() for l in summary_lines if l.strip()])
                break
        
        return summary[:200]  # Limit to 200 characters

def extract_resume_features(file_path):
    """
    Main function to extract features from resume
    Returns a dictionary with extracted information
    """
    try:
        parser = SimpleResumeParser()
        text = parser.extract_text(file_path)
        
        if not text:
            return {
                'name': '',
                'email': '',
                'mobile_number': '',
                'skills': [],
                'experience': [],
                'education': [],
                'summary': ''
            }
        
        # Extract all features
        features = {
            'name': parser.extract_name(text),
            'email': parser.extract_email(text),
            'mobile_number': parser.extract_phone(text),
            'skills': parser.extract_skills(text),
            'experience': parser.extract_experience(text),
            'education': parser.extract_education(text),
            'summary': parser.extract_summary(text)
        }
        
        return features
        
    except Exception as e:
        print(f"Error extracting resume features: {e}")
        return {
            'name': '',
            'email': '',
            'mobile_number': '',
            'skills': [],
            'experience': [],
            'education': [],
            'summary': ''
        }

# For backward compatibility
def parse_resume(file_path):
    return extract_resume_features(file_path)