Spaces:
Paused
Paused
File size: 16,834 Bytes
9ee49ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
"""
Helper functions for retrieving interview questions and answers from an
existing Qdrant vector collection. These functions encapsulate the
logic for extracting available job roles, fetching all Q&A pairs for a
given role, finding similar roles when an exact match is not present,
and assembling a randomised context from retrieved data. They rely on
the ``qdrant-client`` library for interacting with the remote
collection, ``sentence-transformers`` for computing embeddings, and
scikit-learn's cosine similarity implementation.
The collection is expected to exist prior to use and to be
configured with vectors generated by the all-MiniLM-L6-v2 model. Do
not modify the connection details, vector size or distance metric.
Usage example::
from backend.services.interview_retrieval import (
extract_all_roles_from_qdrant, retrieve_interview_data,
random_context_chunks
)
all_roles = extract_all_roles_from_qdrant(collection_name="interview_questions")
retrieved = retrieve_interview_data("data scientist", all_roles)
context = random_context_chunks(retrieved, k=4)
The above snippet fetches all stored roles, retrieves Q&A pairs for
the specified role (falling back to similar roles if necessary), and
builds a randomised context of four question/answer items.
These helpers are designed to be drop‑in compatible with the existing
interview system. They deliberately avoid using Qdrant's ``search``
API, instead relying on ``scroll`` to iterate through all records.
"""
from __future__ import annotations
import logging
import random
from typing import Dict, List, Sequence, Tuple
try:
# Attempt to import Qdrant client classes. In environments where
# qdrant-client is not installed (e.g. during local testing without
# vector storage), these imports will fail. We handle that by
# assigning ``None`` to the client and conditionally disabling
# functions that depend on it.
from qdrant_client import QdrantClient # type: ignore
from qdrant_client.http.models import Filter, FieldCondition, MatchValue # type: ignore
except Exception:
QdrantClient = None # type: ignore
Filter = None # type: ignore
FieldCondition = None # type: ignore
MatchValue = None # type: ignore
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# ``sentence_transformers`` is an optional dependency. To avoid
# import‑time errors in environments where it is absent (e.g. during
# lightweight testing or static analysis), we avoid importing it at
# module level. Instead, ``LocalEmbeddings`` will attempt to import
# SentenceTransformer when instantiated. If the import fails, a
# RuntimeError is raised from within the constructor, signalling that
# embedding functionality is unavailable.
SentenceTransformer = None # type: ignore
# ---------------------------------------------------------------------------
# Qdrant configuration
#
# These connection details must not be altered. They point to the
# existing Qdrant instance containing interview questions and answers.
if QdrantClient is not None:
qdrant_client: QdrantClient | None = QdrantClient(
url="https://313b1ceb-057f-4b7b-89f5-7b19a213fe65.us-east-1-0.aws.cloud.qdrant.io:6333",
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.w13SPZbljbSvt9Ch_0r034QhMFlmEr4ctXqLo2zhxm4",
)
else:
qdrant_client = None
# Name of the Qdrant collection containing interview Q&A pairs. Do not
# modify this value; the collection already exists and is populated.
COLLECTION_NAME: str = "interview_questions"
class LocalEmbeddings:
"""
Lightweight wrapper around a SentenceTransformer model. Provides
convenience methods for embedding a single query string or a list of
documents. The model name is fixed to the one used during data
ingestion (all‑MiniLM‑L6‑v2).
"""
def __init__(self, model_name: str = "all-MiniLM-L6-v2") -> None:
global SentenceTransformer # use global to update when imported
if SentenceTransformer is None:
try:
from sentence_transformers import SentenceTransformer as _ST # type: ignore
SentenceTransformer = _ST # type: ignore
except Exception as exc:
# Fail loudly when embeddings cannot be loaded. The caller
# should ensure that ``sentence-transformers`` is installed.
raise RuntimeError(
"sentence-transformers is required to compute embeddings. Please install the package."
) from exc
self.model = SentenceTransformer(model_name) # type: ignore
def embed_query(self, text: str) -> List[float]:
"""Embed a single query string and return a list of floats."""
return self.model.encode(text).tolist()
def embed_documents(self, documents: Sequence[str]) -> List[List[float]]:
"""Embed a sequence of documents and return a list of vectors."""
return self.model.encode(list(documents)).tolist()
# Instantiate the embeddings once. This avoids repeatedly loading
# model weights on each function call. If sentence-transformers is
# unavailable, ``embeddings`` will be set to ``None`` and similarity
# searches will be disabled. Consumers should check for ``None``
# where appropriate.
try:
embeddings: LocalEmbeddings | None = LocalEmbeddings()
except Exception as exc:
logging.warning(
"Failed to initialise LocalEmbeddings. Similarity search will be disabled. "
f"Error: {exc}"
)
embeddings = None
def extract_all_roles_from_qdrant(collection_name: str = COLLECTION_NAME) -> List[str]:
"""
Extract all unique job roles from the specified Qdrant collection.
This function iterates through every point in the collection using
Qdrant's ``scroll`` API and collects the ``job_role`` field from
payloads. It returns a sorted list of unique roles. Roles in the
underlying data are expected to be stored in lowercase; however,
callers should not rely on this and should normalise input when
performing comparisons.
Parameters
----------
collection_name : str, optional
Name of the Qdrant collection. Defaults to ``COLLECTION_NAME``.
Returns
-------
List[str]
A list of unique job roles present in the collection.
"""
unique_roles: set[str] = set()
offset: Tuple[str, int] | None = None
limit: int = 256 # reasonable batch size to avoid heavy memory usage
# If the Qdrant client failed to initialise, return an empty list.
if qdrant_client is None:
logging.error(
"Qdrant client is unavailable; cannot extract roles. Ensure qdrant-client is installed."
)
return []
while True:
try:
# ``scroll`` returns a tuple: (list of points, next offset)
points, offset = qdrant_client.scroll(
collection_name=collection_name,
scroll_filter=None,
offset=offset,
limit=limit,
with_payload=True,
with_vectors=False,
)
except Exception as exc:
logging.error(f"Error scrolling Qdrant collection '{collection_name}': {exc}")
break
for point in points:
payload = getattr(point, "payload", {}) or {}
role = payload.get("job_role")
if isinstance(role, str) and role.strip():
unique_roles.add(role.strip().lower())
# When ``offset`` is None, we have reached the end of the collection.
if offset is None:
break
return sorted(unique_roles)
def get_role_questions(job_role: str) -> List[Dict[str, str]]:
"""
Retrieve all interview questions and answers for a specific job role.
This helper uses Qdrant's ``scroll`` API with a ``Filter`` that
matches the ``job_role`` payload field exactly. All matching
entries are returned, regardless of the number of stored vectors.
Parameters
----------
job_role : str
The job role to match against the ``job_role`` field in payloads.
Matching is case‑insensitive; the provided role is normalised
internally to lowercase.
Returns
-------
List[Dict[str, str]]
A list of dictionaries, each containing ``question``, ``answer``
and ``job_role`` keys. If no entries are found, an empty list
is returned.
"""
if not isinstance(job_role, str) or not job_role.strip():
return []
role_lower = job_role.strip().lower()
# Build a filter to match the exact job_role value. We avoid
# constructing nested field paths because the payload is flat.
if qdrant_client is None or Filter is None or FieldCondition is None or MatchValue is None:
logging.error(
"Qdrant client or filter classes are unavailable; cannot retrieve questions for roles."
)
return []
match_filter = Filter(
must=[
FieldCondition(
key="job_role",
match=MatchValue(value=role_lower),
)
]
)
results: List[Dict[str, str]] = []
offset: Tuple[str, int] | None = None
limit: int = 256
while True:
try:
points, offset = qdrant_client.scroll(
collection_name=COLLECTION_NAME,
scroll_filter=match_filter,
offset=offset,
limit=limit,
with_payload=True,
with_vectors=False,
)
except Exception as exc:
logging.error(f"Error retrieving questions for role '{job_role}': {exc}")
break
for point in points:
payload = getattr(point, "payload", {}) or {}
question = payload.get("question")
answer = payload.get("answer")
payload_role = payload.get("job_role")
if all(isinstance(item, str) for item in (question, answer, payload_role)):
results.append({
"question": question,
"answer": answer,
"job_role": payload_role,
})
if offset is None:
break
return results
def find_similar_roles(user_role: str, all_roles: Sequence[str], top_k: int = 3) -> List[str]:
"""
Find the most similar job roles to the provided role string.
When an exact match for ``user_role`` is not found in the collection,
this helper computes embeddings for the user's input and all known
roles, then ranks them by cosine similarity. It returns up to
``top_k`` roles with the highest similarity scores, excluding any
roles that exactly match ``user_role`` (case‑insensitively).
Parameters
----------
user_role : str
The role provided by the user. This value is embedded and
compared against all known roles.
all_roles : Sequence[str]
A sequence of all role names available in the collection. It is
assumed that these have been normalised to lowercase.
top_k : int, optional
The maximum number of similar roles to return. Defaults to 3.
Returns
-------
List[str]
A list of the most similar roles, ordered by decreasing
similarity. If fewer than ``top_k`` roles are available or
embedding computation fails, a shorter list may be returned.
"""
if not isinstance(user_role, str) or not user_role.strip() or not all_roles:
return []
user_role_norm = user_role.strip().lower()
# Filter out any roles identical to the user input (case‑insensitive)
candidate_roles = [role for role in all_roles if role.lower() != user_role_norm]
if not candidate_roles:
return []
if embeddings is None:
logging.warning(
"Embeddings are unavailable; cannot compute similar roles. Returning empty list."
)
return []
try:
# Compute embeddings for the query and candidate roles
query_vec = np.array([embeddings.embed_query(user_role_norm)])
role_vecs = np.array(embeddings.embed_documents(candidate_roles))
# Compute cosine similarity (higher values indicate greater similarity)
sims: np.ndarray = cosine_similarity(query_vec, role_vecs)[0]
# Pair each role with its similarity and sort descending
paired: List[Tuple[str, float]] = list(zip(candidate_roles, sims))
paired.sort(key=lambda x: x[1], reverse=True)
# Extract the top_k roles (handles case where top_k > number of roles)
top_roles = [role for role, _ in paired[:max(0, top_k)]]
return top_roles
except Exception as exc:
logging.error(f"Error finding similar roles for '{user_role}': {exc}")
return []
def retrieve_interview_data(job_role: str, all_roles: Sequence[str]) -> List[Dict[str, str]]:
"""
Retrieve interview questions and answers for a job role with fallback.
The retrieval process follows these steps:
1. Attempt an exact match by fetching all questions associated with
``job_role`` via ``get_role_questions``.
2. If no questions are returned, compute the ``top_k`` most similar
roles using ``find_similar_roles`` and retrieve questions for each.
3. Deduplicate results based on the question text to avoid
repetition when combining multiple roles.
Parameters
----------
job_role : str
The desired job role provided by the user.
all_roles : Sequence[str]
The complete list of roles available in the collection. Passed
in to avoid re‑fetching roles multiple times.
Returns
-------
List[Dict[str, str]]
A deduplicated list of question/answer dictionaries. The
``job_role`` field in each item reflects the role it was
retrieved from. If neither an exact nor a similar role yields
results, an empty list is returned.
"""
if not isinstance(job_role, str) or not job_role.strip():
return []
# First try exact match
results: List[Dict[str, str]] = get_role_questions(job_role)
# If no results, find similar roles and aggregate their questions
if not results:
similar_roles = find_similar_roles(job_role, all_roles, top_k=3)
for role in similar_roles:
role_questions = get_role_questions(role)
results.extend(role_questions)
# Deduplicate by question text to avoid repetition
seen_questions: set[str] = set()
deduped: List[Dict[str, str]] = []
for item in results:
question = item.get("question")
if isinstance(question, str) and question not in seen_questions:
deduped.append(item)
seen_questions.add(question)
return deduped
def random_context_chunks(retrieved_data: Sequence[Dict[str, str]], k: int = 3) -> str:
"""
Build a context string by sampling Q&A pairs from retrieved data.
This helper randomly selects up to ``k`` items from the provided
collection of question/answer pairs and formats them as a context
string suitable for inclusion in an LLM prompt. Each entry is
formatted as ``"Q: [question]\nA: [answer]"`` and separated by a
blank line. If ``retrieved_data`` is empty, an empty string is
returned.
Parameters
----------
retrieved_data : Sequence[Dict[str, str]]
The list of Q&A dictionaries returned by ``retrieve_interview_data``.
k : int, optional
The number of entries to sample. Defaults to 3. If ``k`` is
greater than the length of ``retrieved_data``, all items are used.
Returns
-------
str
A concatenated context string with each Q&A pair on its own
lines, separated by blank lines. Returns an empty string if
``retrieved_data`` is empty.
"""
if not retrieved_data:
return ""
# Determine the number of samples to draw. ``random.sample`` will
# raise ValueError if k > len(retrieved_data), so we cap it.
num_samples = max(0, min(k, len(retrieved_data)))
try:
sampled = random.sample(list(retrieved_data), num_samples)
except ValueError:
sampled = list(retrieved_data)
# Build the context string
parts: List[str] = []
for item in sampled:
q = item.get("question", "").strip()
a = item.get("answer", "").strip()
if q and a:
parts.append(f"Q: {q}\nA: {a}")
return "\n\n".join(parts)
__all__ = [
"extract_all_roles_from_qdrant",
"get_role_questions",
"find_similar_roles",
"retrieve_interview_data",
"random_context_chunks",
"embeddings",
"qdrant_client",
] |