Spaces:
Paused
Paused
Commit
·
9ee49ff
1
Parent(s):
a1b807c
qdrant included
Browse files
backend/services/interview_engine.py
CHANGED
@@ -8,6 +8,12 @@ import logging
|
|
8 |
import tempfile
|
9 |
import shutil
|
10 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
print("🔥 CUDA Available")
|
@@ -96,6 +102,10 @@ load_whisper_model()
|
|
96 |
|
97 |
def generate_first_question(profile, job):
|
98 |
"""Generate the first interview question based on profile and job"""
|
|
|
|
|
|
|
|
|
99 |
try:
|
100 |
prompt = f"""
|
101 |
You are conducting an interview for a {job.role} position at {job.company}.
|
@@ -104,6 +114,9 @@ def generate_first_question(profile, job):
|
|
104 |
- Experience: {profile.get('experience', [])}
|
105 |
- Education: {profile.get('education', [])}
|
106 |
|
|
|
|
|
|
|
107 |
Generate an appropriate opening interview question that is professional and relevant.
|
108 |
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
|
109 |
If the interview is for a technical role, focus on technical skills. Make the question related
|
|
|
8 |
import tempfile
|
9 |
import shutil
|
10 |
import torch
|
11 |
+
from backend.services.interview_retrieval import (
|
12 |
+
extract_all_roles_from_qdrant,
|
13 |
+
retrieve_interview_data,
|
14 |
+
random_context_chunks
|
15 |
+
)
|
16 |
+
|
17 |
|
18 |
if torch.cuda.is_available():
|
19 |
print("🔥 CUDA Available")
|
|
|
102 |
|
103 |
def generate_first_question(profile, job):
|
104 |
"""Generate the first interview question based on profile and job"""
|
105 |
+
all_roles = extract_all_roles_from_qdrant()
|
106 |
+
retrieved_data = retrieve_interview_data(job.role.lower(), all_roles)
|
107 |
+
context_data = random_context_chunks(retrieved_data, k=4)
|
108 |
+
|
109 |
try:
|
110 |
prompt = f"""
|
111 |
You are conducting an interview for a {job.role} position at {job.company}.
|
|
|
114 |
- Experience: {profile.get('experience', [])}
|
115 |
- Education: {profile.get('education', [])}
|
116 |
|
117 |
+
Use the following context to generate a relevant opening question:
|
118 |
+
{context_data}
|
119 |
+
|
120 |
Generate an appropriate opening interview question that is professional and relevant.
|
121 |
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
|
122 |
If the interview is for a technical role, focus on technical skills. Make the question related
|
backend/services/interview_retrieval.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helper functions for retrieving interview questions and answers from an
|
3 |
+
existing Qdrant vector collection. These functions encapsulate the
|
4 |
+
logic for extracting available job roles, fetching all Q&A pairs for a
|
5 |
+
given role, finding similar roles when an exact match is not present,
|
6 |
+
and assembling a randomised context from retrieved data. They rely on
|
7 |
+
the ``qdrant-client`` library for interacting with the remote
|
8 |
+
collection, ``sentence-transformers`` for computing embeddings, and
|
9 |
+
scikit-learn's cosine similarity implementation.
|
10 |
+
|
11 |
+
The collection is expected to exist prior to use and to be
|
12 |
+
configured with vectors generated by the all-MiniLM-L6-v2 model. Do
|
13 |
+
not modify the connection details, vector size or distance metric.
|
14 |
+
|
15 |
+
Usage example::
|
16 |
+
|
17 |
+
from backend.services.interview_retrieval import (
|
18 |
+
extract_all_roles_from_qdrant, retrieve_interview_data,
|
19 |
+
random_context_chunks
|
20 |
+
)
|
21 |
+
|
22 |
+
all_roles = extract_all_roles_from_qdrant(collection_name="interview_questions")
|
23 |
+
retrieved = retrieve_interview_data("data scientist", all_roles)
|
24 |
+
context = random_context_chunks(retrieved, k=4)
|
25 |
+
|
26 |
+
The above snippet fetches all stored roles, retrieves Q&A pairs for
|
27 |
+
the specified role (falling back to similar roles if necessary), and
|
28 |
+
builds a randomised context of four question/answer items.
|
29 |
+
|
30 |
+
These helpers are designed to be drop‑in compatible with the existing
|
31 |
+
interview system. They deliberately avoid using Qdrant's ``search``
|
32 |
+
API, instead relying on ``scroll`` to iterate through all records.
|
33 |
+
"""
|
34 |
+
|
35 |
+
from __future__ import annotations
|
36 |
+
|
37 |
+
import logging
|
38 |
+
import random
|
39 |
+
from typing import Dict, List, Sequence, Tuple
|
40 |
+
|
41 |
+
try:
|
42 |
+
# Attempt to import Qdrant client classes. In environments where
|
43 |
+
# qdrant-client is not installed (e.g. during local testing without
|
44 |
+
# vector storage), these imports will fail. We handle that by
|
45 |
+
# assigning ``None`` to the client and conditionally disabling
|
46 |
+
# functions that depend on it.
|
47 |
+
from qdrant_client import QdrantClient # type: ignore
|
48 |
+
from qdrant_client.http.models import Filter, FieldCondition, MatchValue # type: ignore
|
49 |
+
except Exception:
|
50 |
+
QdrantClient = None # type: ignore
|
51 |
+
Filter = None # type: ignore
|
52 |
+
FieldCondition = None # type: ignore
|
53 |
+
MatchValue = None # type: ignore
|
54 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
55 |
+
import numpy as np
|
56 |
+
|
57 |
+
# ``sentence_transformers`` is an optional dependency. To avoid
|
58 |
+
# import‑time errors in environments where it is absent (e.g. during
|
59 |
+
# lightweight testing or static analysis), we avoid importing it at
|
60 |
+
# module level. Instead, ``LocalEmbeddings`` will attempt to import
|
61 |
+
# SentenceTransformer when instantiated. If the import fails, a
|
62 |
+
# RuntimeError is raised from within the constructor, signalling that
|
63 |
+
# embedding functionality is unavailable.
|
64 |
+
SentenceTransformer = None # type: ignore
|
65 |
+
|
66 |
+
|
67 |
+
# ---------------------------------------------------------------------------
|
68 |
+
# Qdrant configuration
|
69 |
+
#
|
70 |
+
# These connection details must not be altered. They point to the
|
71 |
+
# existing Qdrant instance containing interview questions and answers.
|
72 |
+
|
73 |
+
if QdrantClient is not None:
|
74 |
+
qdrant_client: QdrantClient | None = QdrantClient(
|
75 |
+
url="https://313b1ceb-057f-4b7b-89f5-7b19a213fe65.us-east-1-0.aws.cloud.qdrant.io:6333",
|
76 |
+
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.w13SPZbljbSvt9Ch_0r034QhMFlmEr4ctXqLo2zhxm4",
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
qdrant_client = None
|
80 |
+
|
81 |
+
# Name of the Qdrant collection containing interview Q&A pairs. Do not
|
82 |
+
# modify this value; the collection already exists and is populated.
|
83 |
+
COLLECTION_NAME: str = "interview_questions"
|
84 |
+
|
85 |
+
|
86 |
+
class LocalEmbeddings:
|
87 |
+
"""
|
88 |
+
Lightweight wrapper around a SentenceTransformer model. Provides
|
89 |
+
convenience methods for embedding a single query string or a list of
|
90 |
+
documents. The model name is fixed to the one used during data
|
91 |
+
ingestion (all‑MiniLM‑L6‑v2).
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, model_name: str = "all-MiniLM-L6-v2") -> None:
|
95 |
+
global SentenceTransformer # use global to update when imported
|
96 |
+
if SentenceTransformer is None:
|
97 |
+
try:
|
98 |
+
from sentence_transformers import SentenceTransformer as _ST # type: ignore
|
99 |
+
SentenceTransformer = _ST # type: ignore
|
100 |
+
except Exception as exc:
|
101 |
+
# Fail loudly when embeddings cannot be loaded. The caller
|
102 |
+
# should ensure that ``sentence-transformers`` is installed.
|
103 |
+
raise RuntimeError(
|
104 |
+
"sentence-transformers is required to compute embeddings. Please install the package."
|
105 |
+
) from exc
|
106 |
+
self.model = SentenceTransformer(model_name) # type: ignore
|
107 |
+
|
108 |
+
def embed_query(self, text: str) -> List[float]:
|
109 |
+
"""Embed a single query string and return a list of floats."""
|
110 |
+
return self.model.encode(text).tolist()
|
111 |
+
|
112 |
+
def embed_documents(self, documents: Sequence[str]) -> List[List[float]]:
|
113 |
+
"""Embed a sequence of documents and return a list of vectors."""
|
114 |
+
return self.model.encode(list(documents)).tolist()
|
115 |
+
|
116 |
+
|
117 |
+
# Instantiate the embeddings once. This avoids repeatedly loading
|
118 |
+
# model weights on each function call. If sentence-transformers is
|
119 |
+
# unavailable, ``embeddings`` will be set to ``None`` and similarity
|
120 |
+
# searches will be disabled. Consumers should check for ``None``
|
121 |
+
# where appropriate.
|
122 |
+
try:
|
123 |
+
embeddings: LocalEmbeddings | None = LocalEmbeddings()
|
124 |
+
except Exception as exc:
|
125 |
+
logging.warning(
|
126 |
+
"Failed to initialise LocalEmbeddings. Similarity search will be disabled. "
|
127 |
+
f"Error: {exc}"
|
128 |
+
)
|
129 |
+
embeddings = None
|
130 |
+
|
131 |
+
|
132 |
+
def extract_all_roles_from_qdrant(collection_name: str = COLLECTION_NAME) -> List[str]:
|
133 |
+
"""
|
134 |
+
Extract all unique job roles from the specified Qdrant collection.
|
135 |
+
|
136 |
+
This function iterates through every point in the collection using
|
137 |
+
Qdrant's ``scroll`` API and collects the ``job_role`` field from
|
138 |
+
payloads. It returns a sorted list of unique roles. Roles in the
|
139 |
+
underlying data are expected to be stored in lowercase; however,
|
140 |
+
callers should not rely on this and should normalise input when
|
141 |
+
performing comparisons.
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
collection_name : str, optional
|
146 |
+
Name of the Qdrant collection. Defaults to ``COLLECTION_NAME``.
|
147 |
+
|
148 |
+
Returns
|
149 |
+
-------
|
150 |
+
List[str]
|
151 |
+
A list of unique job roles present in the collection.
|
152 |
+
"""
|
153 |
+
unique_roles: set[str] = set()
|
154 |
+
offset: Tuple[str, int] | None = None
|
155 |
+
limit: int = 256 # reasonable batch size to avoid heavy memory usage
|
156 |
+
|
157 |
+
# If the Qdrant client failed to initialise, return an empty list.
|
158 |
+
if qdrant_client is None:
|
159 |
+
logging.error(
|
160 |
+
"Qdrant client is unavailable; cannot extract roles. Ensure qdrant-client is installed."
|
161 |
+
)
|
162 |
+
return []
|
163 |
+
|
164 |
+
while True:
|
165 |
+
try:
|
166 |
+
# ``scroll`` returns a tuple: (list of points, next offset)
|
167 |
+
points, offset = qdrant_client.scroll(
|
168 |
+
collection_name=collection_name,
|
169 |
+
scroll_filter=None,
|
170 |
+
offset=offset,
|
171 |
+
limit=limit,
|
172 |
+
with_payload=True,
|
173 |
+
with_vectors=False,
|
174 |
+
)
|
175 |
+
except Exception as exc:
|
176 |
+
logging.error(f"Error scrolling Qdrant collection '{collection_name}': {exc}")
|
177 |
+
break
|
178 |
+
|
179 |
+
for point in points:
|
180 |
+
payload = getattr(point, "payload", {}) or {}
|
181 |
+
role = payload.get("job_role")
|
182 |
+
if isinstance(role, str) and role.strip():
|
183 |
+
unique_roles.add(role.strip().lower())
|
184 |
+
|
185 |
+
# When ``offset`` is None, we have reached the end of the collection.
|
186 |
+
if offset is None:
|
187 |
+
break
|
188 |
+
|
189 |
+
return sorted(unique_roles)
|
190 |
+
|
191 |
+
|
192 |
+
def get_role_questions(job_role: str) -> List[Dict[str, str]]:
|
193 |
+
"""
|
194 |
+
Retrieve all interview questions and answers for a specific job role.
|
195 |
+
|
196 |
+
This helper uses Qdrant's ``scroll`` API with a ``Filter`` that
|
197 |
+
matches the ``job_role`` payload field exactly. All matching
|
198 |
+
entries are returned, regardless of the number of stored vectors.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
----------
|
202 |
+
job_role : str
|
203 |
+
The job role to match against the ``job_role`` field in payloads.
|
204 |
+
Matching is case‑insensitive; the provided role is normalised
|
205 |
+
internally to lowercase.
|
206 |
+
|
207 |
+
Returns
|
208 |
+
-------
|
209 |
+
List[Dict[str, str]]
|
210 |
+
A list of dictionaries, each containing ``question``, ``answer``
|
211 |
+
and ``job_role`` keys. If no entries are found, an empty list
|
212 |
+
is returned.
|
213 |
+
"""
|
214 |
+
if not isinstance(job_role, str) or not job_role.strip():
|
215 |
+
return []
|
216 |
+
|
217 |
+
role_lower = job_role.strip().lower()
|
218 |
+
|
219 |
+
# Build a filter to match the exact job_role value. We avoid
|
220 |
+
# constructing nested field paths because the payload is flat.
|
221 |
+
if qdrant_client is None or Filter is None or FieldCondition is None or MatchValue is None:
|
222 |
+
logging.error(
|
223 |
+
"Qdrant client or filter classes are unavailable; cannot retrieve questions for roles."
|
224 |
+
)
|
225 |
+
return []
|
226 |
+
|
227 |
+
match_filter = Filter(
|
228 |
+
must=[
|
229 |
+
FieldCondition(
|
230 |
+
key="job_role",
|
231 |
+
match=MatchValue(value=role_lower),
|
232 |
+
)
|
233 |
+
]
|
234 |
+
)
|
235 |
+
|
236 |
+
results: List[Dict[str, str]] = []
|
237 |
+
offset: Tuple[str, int] | None = None
|
238 |
+
limit: int = 256
|
239 |
+
|
240 |
+
while True:
|
241 |
+
try:
|
242 |
+
points, offset = qdrant_client.scroll(
|
243 |
+
collection_name=COLLECTION_NAME,
|
244 |
+
scroll_filter=match_filter,
|
245 |
+
offset=offset,
|
246 |
+
limit=limit,
|
247 |
+
with_payload=True,
|
248 |
+
with_vectors=False,
|
249 |
+
)
|
250 |
+
except Exception as exc:
|
251 |
+
logging.error(f"Error retrieving questions for role '{job_role}': {exc}")
|
252 |
+
break
|
253 |
+
|
254 |
+
for point in points:
|
255 |
+
payload = getattr(point, "payload", {}) or {}
|
256 |
+
question = payload.get("question")
|
257 |
+
answer = payload.get("answer")
|
258 |
+
payload_role = payload.get("job_role")
|
259 |
+
if all(isinstance(item, str) for item in (question, answer, payload_role)):
|
260 |
+
results.append({
|
261 |
+
"question": question,
|
262 |
+
"answer": answer,
|
263 |
+
"job_role": payload_role,
|
264 |
+
})
|
265 |
+
|
266 |
+
if offset is None:
|
267 |
+
break
|
268 |
+
|
269 |
+
return results
|
270 |
+
|
271 |
+
|
272 |
+
def find_similar_roles(user_role: str, all_roles: Sequence[str], top_k: int = 3) -> List[str]:
|
273 |
+
"""
|
274 |
+
Find the most similar job roles to the provided role string.
|
275 |
+
|
276 |
+
When an exact match for ``user_role`` is not found in the collection,
|
277 |
+
this helper computes embeddings for the user's input and all known
|
278 |
+
roles, then ranks them by cosine similarity. It returns up to
|
279 |
+
``top_k`` roles with the highest similarity scores, excluding any
|
280 |
+
roles that exactly match ``user_role`` (case‑insensitively).
|
281 |
+
|
282 |
+
Parameters
|
283 |
+
----------
|
284 |
+
user_role : str
|
285 |
+
The role provided by the user. This value is embedded and
|
286 |
+
compared against all known roles.
|
287 |
+
all_roles : Sequence[str]
|
288 |
+
A sequence of all role names available in the collection. It is
|
289 |
+
assumed that these have been normalised to lowercase.
|
290 |
+
top_k : int, optional
|
291 |
+
The maximum number of similar roles to return. Defaults to 3.
|
292 |
+
|
293 |
+
Returns
|
294 |
+
-------
|
295 |
+
List[str]
|
296 |
+
A list of the most similar roles, ordered by decreasing
|
297 |
+
similarity. If fewer than ``top_k`` roles are available or
|
298 |
+
embedding computation fails, a shorter list may be returned.
|
299 |
+
"""
|
300 |
+
if not isinstance(user_role, str) or not user_role.strip() or not all_roles:
|
301 |
+
return []
|
302 |
+
|
303 |
+
user_role_norm = user_role.strip().lower()
|
304 |
+
|
305 |
+
# Filter out any roles identical to the user input (case‑insensitive)
|
306 |
+
candidate_roles = [role for role in all_roles if role.lower() != user_role_norm]
|
307 |
+
if not candidate_roles:
|
308 |
+
return []
|
309 |
+
|
310 |
+
if embeddings is None:
|
311 |
+
logging.warning(
|
312 |
+
"Embeddings are unavailable; cannot compute similar roles. Returning empty list."
|
313 |
+
)
|
314 |
+
return []
|
315 |
+
try:
|
316 |
+
# Compute embeddings for the query and candidate roles
|
317 |
+
query_vec = np.array([embeddings.embed_query(user_role_norm)])
|
318 |
+
role_vecs = np.array(embeddings.embed_documents(candidate_roles))
|
319 |
+
|
320 |
+
# Compute cosine similarity (higher values indicate greater similarity)
|
321 |
+
sims: np.ndarray = cosine_similarity(query_vec, role_vecs)[0]
|
322 |
+
|
323 |
+
# Pair each role with its similarity and sort descending
|
324 |
+
paired: List[Tuple[str, float]] = list(zip(candidate_roles, sims))
|
325 |
+
paired.sort(key=lambda x: x[1], reverse=True)
|
326 |
+
|
327 |
+
# Extract the top_k roles (handles case where top_k > number of roles)
|
328 |
+
top_roles = [role for role, _ in paired[:max(0, top_k)]]
|
329 |
+
return top_roles
|
330 |
+
except Exception as exc:
|
331 |
+
logging.error(f"Error finding similar roles for '{user_role}': {exc}")
|
332 |
+
return []
|
333 |
+
|
334 |
+
|
335 |
+
def retrieve_interview_data(job_role: str, all_roles: Sequence[str]) -> List[Dict[str, str]]:
|
336 |
+
"""
|
337 |
+
Retrieve interview questions and answers for a job role with fallback.
|
338 |
+
|
339 |
+
The retrieval process follows these steps:
|
340 |
+
1. Attempt an exact match by fetching all questions associated with
|
341 |
+
``job_role`` via ``get_role_questions``.
|
342 |
+
2. If no questions are returned, compute the ``top_k`` most similar
|
343 |
+
roles using ``find_similar_roles`` and retrieve questions for each.
|
344 |
+
3. Deduplicate results based on the question text to avoid
|
345 |
+
repetition when combining multiple roles.
|
346 |
+
|
347 |
+
Parameters
|
348 |
+
----------
|
349 |
+
job_role : str
|
350 |
+
The desired job role provided by the user.
|
351 |
+
all_roles : Sequence[str]
|
352 |
+
The complete list of roles available in the collection. Passed
|
353 |
+
in to avoid re‑fetching roles multiple times.
|
354 |
+
|
355 |
+
Returns
|
356 |
+
-------
|
357 |
+
List[Dict[str, str]]
|
358 |
+
A deduplicated list of question/answer dictionaries. The
|
359 |
+
``job_role`` field in each item reflects the role it was
|
360 |
+
retrieved from. If neither an exact nor a similar role yields
|
361 |
+
results, an empty list is returned.
|
362 |
+
"""
|
363 |
+
if not isinstance(job_role, str) or not job_role.strip():
|
364 |
+
return []
|
365 |
+
|
366 |
+
# First try exact match
|
367 |
+
results: List[Dict[str, str]] = get_role_questions(job_role)
|
368 |
+
|
369 |
+
# If no results, find similar roles and aggregate their questions
|
370 |
+
if not results:
|
371 |
+
similar_roles = find_similar_roles(job_role, all_roles, top_k=3)
|
372 |
+
for role in similar_roles:
|
373 |
+
role_questions = get_role_questions(role)
|
374 |
+
results.extend(role_questions)
|
375 |
+
|
376 |
+
# Deduplicate by question text to avoid repetition
|
377 |
+
seen_questions: set[str] = set()
|
378 |
+
deduped: List[Dict[str, str]] = []
|
379 |
+
for item in results:
|
380 |
+
question = item.get("question")
|
381 |
+
if isinstance(question, str) and question not in seen_questions:
|
382 |
+
deduped.append(item)
|
383 |
+
seen_questions.add(question)
|
384 |
+
|
385 |
+
return deduped
|
386 |
+
|
387 |
+
|
388 |
+
def random_context_chunks(retrieved_data: Sequence[Dict[str, str]], k: int = 3) -> str:
|
389 |
+
"""
|
390 |
+
Build a context string by sampling Q&A pairs from retrieved data.
|
391 |
+
|
392 |
+
This helper randomly selects up to ``k`` items from the provided
|
393 |
+
collection of question/answer pairs and formats them as a context
|
394 |
+
string suitable for inclusion in an LLM prompt. Each entry is
|
395 |
+
formatted as ``"Q: [question]\nA: [answer]"`` and separated by a
|
396 |
+
blank line. If ``retrieved_data`` is empty, an empty string is
|
397 |
+
returned.
|
398 |
+
|
399 |
+
Parameters
|
400 |
+
----------
|
401 |
+
retrieved_data : Sequence[Dict[str, str]]
|
402 |
+
The list of Q&A dictionaries returned by ``retrieve_interview_data``.
|
403 |
+
k : int, optional
|
404 |
+
The number of entries to sample. Defaults to 3. If ``k`` is
|
405 |
+
greater than the length of ``retrieved_data``, all items are used.
|
406 |
+
|
407 |
+
Returns
|
408 |
+
-------
|
409 |
+
str
|
410 |
+
A concatenated context string with each Q&A pair on its own
|
411 |
+
lines, separated by blank lines. Returns an empty string if
|
412 |
+
``retrieved_data`` is empty.
|
413 |
+
"""
|
414 |
+
if not retrieved_data:
|
415 |
+
return ""
|
416 |
+
|
417 |
+
# Determine the number of samples to draw. ``random.sample`` will
|
418 |
+
# raise ValueError if k > len(retrieved_data), so we cap it.
|
419 |
+
num_samples = max(0, min(k, len(retrieved_data)))
|
420 |
+
try:
|
421 |
+
sampled = random.sample(list(retrieved_data), num_samples)
|
422 |
+
except ValueError:
|
423 |
+
sampled = list(retrieved_data)
|
424 |
+
|
425 |
+
# Build the context string
|
426 |
+
parts: List[str] = []
|
427 |
+
for item in sampled:
|
428 |
+
q = item.get("question", "").strip()
|
429 |
+
a = item.get("answer", "").strip()
|
430 |
+
if q and a:
|
431 |
+
parts.append(f"Q: {q}\nA: {a}")
|
432 |
+
|
433 |
+
return "\n\n".join(parts)
|
434 |
+
|
435 |
+
|
436 |
+
__all__ = [
|
437 |
+
"extract_all_roles_from_qdrant",
|
438 |
+
"get_role_questions",
|
439 |
+
"find_similar_roles",
|
440 |
+
"retrieve_interview_data",
|
441 |
+
"random_context_chunks",
|
442 |
+
"embeddings",
|
443 |
+
"qdrant_client",
|
444 |
+
]
|