Spaces:
Paused
Paused
from __future__ import annotations | |
import os | |
import re | |
import subprocess | |
import zipfile | |
import json | |
import torch | |
from typing import List | |
os.environ["OMP_NUM_THREADS"] = "1" | |
os.environ["OPENBLAS_NUM_THREADS"] = "1" | |
os.environ["MKL_NUM_THREADS"] = "1" | |
os.environ["NUMEXPR_NUM_THREADS"] = "1" | |
os.environ["VECLIB_MAXIMUM_THREADS"] = "1" | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
import torch | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
# --- UPDATED: Using Deepseek-Coder-V2-Lite-Instruct for better performance --- | |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/Deepseek-Coder-V2-Lite-Instruct", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"deepseek-ai/Deepseek-Coder-V2-Lite-Instruct", | |
quantization_config=bnb_config, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True | |
) | |
# =============================== | |
# Text Extraction (PDF/DOCX) | |
# =============================== | |
def extract_text(file_path: str) -> str: | |
"""Extract text from PDF or DOCX resumes.""" | |
if not file_path or not os.path.isfile(file_path): | |
return "" | |
lower_name = file_path.lower() | |
try: | |
if lower_name.endswith('.pdf'): | |
result = subprocess.run( | |
['pdftotext', '-layout', file_path, '-'], | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
check=False | |
) | |
return result.stdout.decode('utf-8', errors='ignore') | |
elif lower_name.endswith('.docx'): | |
with zipfile.ZipFile(file_path) as zf: | |
with zf.open('word/document.xml') as docx_xml: | |
xml_bytes = docx_xml.read() | |
xml_text = xml_bytes.decode('utf-8', errors='ignore') | |
xml_text = re.sub(r'<w:p[^>]*>', '\n', xml_text, flags=re.I) | |
text = re.sub(r'<[^>]+>', ' ', xml_text) | |
return re.sub(r'\s+', ' ', text) | |
else: | |
return "" | |
except Exception: | |
return "" | |
# =============================== | |
# Name Extraction (Fallback) | |
# =============================== | |
def extract_name(text: str, filename: str) -> str: | |
"""Extract candidate's name from resume text or filename.""" | |
if text: | |
lines = [ln.strip() for ln in text.splitlines() if ln.strip()] | |
for line in lines[:10]: | |
if re.match(r'(?i)resume|curriculum vitae', line): | |
continue | |
words = line.split() | |
if 1 < len(words) <= 4: | |
if all(re.match(r'^[A-ZÀ-ÖØ-Þ][\w\-]*', w) for w in words): | |
return line | |
base = os.path.basename(filename) | |
base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I) | |
base = re.sub(r'[\._-]+', ' ', base) | |
base = re.sub(r'(?i)\b(cv|resume)\b', '', base) | |
return base.title().strip() | |
# =============================== | |
# Janus-Pro Parsing | |
# =============================== | |
def parse_with_deepseek(text: str) -> dict: | |
"""Use Deepseek-Coder-V2-Lite-Instruct to extract resume details in JSON format.""" | |
# --- UPDATED: Refined prompt for better JSON extraction --- | |
prompt = f""" | |
Extract the following information from the resume text provided below. Your response should be a valid JSON object. | |
**Information to extract:** | |
- **Full Name:** The candidate's full name. | |
- **Email:** The candidate's email address. | |
- **Phone:** The candidate's phone number. | |
- **Skills:** A list of technical and soft skills. | |
- **Education:** A list of academic degrees and institutions. | |
- **Experience:** A list of previous jobs, including company, title, and dates. | |
**Resume Text:** |