Codingo / backend /services /report_generator.py
husseinelsaadi's picture
report added
b5d3943
raw
history blame
7.58 kB
"""Utilities for assembling and exporting interview reports.
This module provides two primary helpers used by the recruiter dashboard:
``generate_llm_interview_report(application)``
Given a candidate's ``Application`` record, assemble a plain‑text report
summarising the interview. Because the interview process currently
executes entirely client‑side and does not persist questions or answers
to the database, this report focuses on the information available on
the server: the candidate's profile, the job requirements and a skills
match score. Should future iterations store richer interview data
server‑side, this function can be extended to include question/answer
transcripts, per‑question scores and LLM‑generated feedback.
``create_pdf_report(report_text)``
Convert a multi‑line string into a simple PDF. The implementation
leverages Matplotlib's PDF backend (available by default) to avoid
heavyweight dependencies such as ReportLab or WeasyPrint, which are
absent from the runtime environment. Text is wrapped and split
across multiple pages as necessary.
"""
from __future__ import annotations
import json
from io import BytesIO
import textwrap
from typing import List
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
def generate_llm_interview_report(application) -> str:
"""Generate a human‑readable interview report for a candidate.
The report includes the candidate's name and email, job details,
application date, a computed skills match summary and placeholder
sections for future enhancements. If server‑side storage of
question/answer pairs is added later, this function can be updated
to incorporate those details.
Parameters
----------
application : backend.models.database.Application
The SQLAlchemy Application instance representing the candidate's
job application. Assumed to have related ``job`` and
``date_applied`` attributes available.
Returns
-------
str
A multi‑line string containing the report contents.
"""
# Defensive imports to avoid circular dependencies at import time
try:
from datetime import datetime # noqa: F401
except Exception:
pass
# Extract candidate skills and job skills
try:
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
except Exception:
candidate_features = {}
candidate_skills: List[str] = candidate_features.get('skills', []) or []
job_skills: List[str] = []
try:
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
except Exception:
job_skills = []
# Compute skills match ratio and label. Normalise to lower case for
# comparison and avoid dividing by zero when ``job_skills`` is empty.
candidate_set = {s.strip().lower() for s in candidate_skills}
job_set = {s.strip().lower() for s in job_skills}
common = candidate_set & job_set
ratio = len(common) / len(job_set) if job_set else 0.0
if ratio >= 0.75:
score_label = 'Excellent'
elif ratio >= 0.5:
score_label = 'Good'
elif ratio >= 0.25:
score_label = 'Medium'
else:
score_label = 'Poor'
# Assemble report lines
lines: List[str] = []
lines.append('Interview Report')
lines.append('=================')
lines.append('')
lines.append(f'Candidate Name: {application.name}')
lines.append(f'Candidate Email: {application.email}')
if application.job:
lines.append(f'Job Applied: {application.job.role}')
lines.append(f'Company: {application.job.company}')
else:
lines.append('Job Applied: N/A')
lines.append('Company: N/A')
# Format date_applied if available
try:
date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A'
except Exception:
date_str = 'N/A'
lines.append(f'Date Applied: {date_str}')
lines.append('')
lines.append('Skills Match Summary:')
# Represent required and candidate skills as comma‑separated lists. Use
# title‑case for presentation and handle empty lists gracefully.
formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A'
formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A'
formatted_common = ', '.join(sorted(common)) if common else 'None'
lines.append(f' Required Skills: {formatted_job_skills}')
lines.append(f' Candidate Skills: {formatted_candidate_skills}')
lines.append(f' Skills in Common: {formatted_common}')
lines.append(f' Match Ratio: {ratio * 100:.0f}%')
lines.append(f' Score: {score_label}')
lines.append('')
lines.append('Additional Notes:')
lines.append('This report was generated automatically based on the information provided in the application.')
lines.append('Interview question and answer details are not currently stored on the server.')
lines.append('Future versions may include a detailed breakdown of interview responses and evaluator feedback.')
return '\n'.join(lines)
def create_pdf_report(report_text: str) -> BytesIO:
"""Convert a plain‑text report into a PDF document.
This helper uses Matplotlib's ``PdfPages`` backend to compose a PDF
containing the supplied text. Lines are wrapped to a reasonable
width and paginated as needed. The returned ``BytesIO`` object can
be passed directly to Flask's ``send_file`` function.
Parameters
----------
report_text : str
The full contents of the report to be included in the PDF.
Returns
-------
BytesIO
A file‑like buffer containing the PDF data. The caller is
responsible for rewinding the buffer (via ``seek(0)``) before
sending it over HTTP.
"""
buffer = BytesIO()
# Split the input into lines and wrap long lines for better layout
raw_lines = report_text.split('\n')
wrapper = textwrap.TextWrapper(width=90, break_long_words=True, replace_whitespace=False)
wrapped_lines: List[str] = []
for line in raw_lines:
if not line:
wrapped_lines.append('')
continue
# Wrap each line individually; the wrapper returns a list
segments = wrapper.wrap(line)
if segments:
wrapped_lines.extend(segments)
else:
wrapped_lines.append(line)
# Determine how many lines to place on each PDF page. The value
# of 40 lines per page fits comfortably on an A4 sheet using the
# selected font size and margins.
lines_per_page = 40
with PdfPages(buffer) as pdf:
for i in range(0, len(wrapped_lines), lines_per_page):
fig = plt.figure(figsize=(8.27, 11.69)) # A4 portrait in inches
fig.patch.set_facecolor('white')
# Compose the block of text for this page
page_text = '\n'.join(wrapped_lines[i:i + lines_per_page])
# Place the text near the top-left corner. ``va='top'``
# ensures the first line starts at the specified y
fig.text(0.1, 0.95, page_text, va='top', ha='left', fontsize=10, family='monospace')
# Save and close the figure to free memory
pdf.savefig(fig)
plt.close(fig)
buffer.seek(0)
return buffer
__all__ = ['generate_llm_interview_report', 'create_pdf_report']