Codingo / backend /routes /interview_api.py
husseinelsaadi's picture
update
27994de
raw
history blame
8.94 kB
import os
import uuid
import json
import logging
from flask import Blueprint, request, jsonify, send_file, url_for, current_app
from flask_login import login_required, current_user
from backend.models.database import db, Job, Application
from backend.services.interview_engine import (
generate_first_question,
edge_tts_to_file_sync,
whisper_stt,
evaluate_answer
)
interview_api = Blueprint("interview_api", __name__)
@interview_api.route("/start_interview", methods=["POST"])
@login_required
def start_interview():
"""
Start a new interview. Generates the first question based on the user's
resume/profile and the selected job. Always returns a JSON payload
containing the question text and, if available, a URL to an audio
rendition of the question.
"""
try:
data = request.get_json() or {}
job_id = data.get("job_id")
# Validate the job and the user's application
job = Job.query.get_or_404(job_id)
application = Application.query.filter_by(
user_id=current_user.id,
job_id=job_id
).first()
if not application or not application.extracted_features:
return jsonify({"error": "No application/profile data found."}), 400
# Parse the candidate's profile
try:
profile = json.loads(application.extracted_features)
except Exception as e:
logging.error(f"Invalid profile JSON: {e}")
return jsonify({"error": "Invalid profile JSON"}), 500
# Generate the first question using the LLM
question = generate_first_question(profile, job)
if not question:
question = "Tell me about yourself and why you're interested in this position."
# Attempt to generate a TTS audio file for the question
audio_url = None
try:
audio_dir = "/tmp/audio"
os.makedirs(audio_dir, exist_ok=True)
filename = f"q_{uuid.uuid4().hex}.wav"
audio_path = os.path.join(audio_dir, filename)
audio_result = edge_tts_to_file_sync(question, audio_path)
if audio_result and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000:
audio_url = url_for("interview_api.get_audio", filename=filename)
logging.info(f"Audio generated successfully: {audio_url}")
else:
logging.warning("Audio generation failed or file too small")
except Exception as e:
logging.error(f"Error generating TTS audio: {e}")
audio_url = None
return jsonify({
"question": question,
"audio_url": audio_url
})
except Exception as e:
logging.error(f"Error in start_interview: {e}")
return jsonify({"error": "Internal server error"}), 500
import subprocess
@interview_api.route("/transcribe_audio", methods=["POST"])
@login_required
def transcribe_audio():
"""Transcribe uploaded .webm audio using ffmpeg conversion and Faster-Whisper"""
audio_file = request.files.get("audio")
if not audio_file:
return jsonify({"error": "No audio file received."}), 400
temp_dir = "/tmp/interview_temp"
os.makedirs(temp_dir, exist_ok=True)
original_path = os.path.join(temp_dir, f"user_audio_{uuid.uuid4().hex}.webm")
wav_path = original_path.replace(".webm", ".wav")
audio_file.save(original_path)
# Convert to WAV using ffmpeg
try:
subprocess.run(
["ffmpeg", "-y", "-i", original_path, wav_path],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL
)
except Exception as e:
logging.error(f"FFmpeg conversion failed: {e}")
return jsonify({"error": "Failed to convert audio"}), 500
# Transcribe
transcript = whisper_stt(wav_path)
# Cleanup
try:
os.remove(original_path)
os.remove(wav_path)
except:
pass
if not transcript or not transcript.strip():
return jsonify({"error": "No speech detected in audio. Please try again."}), 400
return jsonify({"transcript": transcript})
@interview_api.route("/process_answer", methods=["POST"])
@login_required
def process_answer():
"""
Process a user's answer and return a follow‑up question along with an
evaluation. Always responds with JSON.
"""
try:
data = request.get_json() or {}
answer = data.get("answer", "").strip()
question_idx = data.get("questionIndex", 0)
if not answer:
return jsonify({"error": "No answer provided."}), 400
# Get the current question for evaluation context
current_question = data.get("current_question", "Tell me about yourself")
# Evaluate the answer
evaluation_result = evaluate_answer(current_question, answer)
# Determine completion (3 questions in total, zero‑based index)
is_complete = question_idx >= 2
next_question_text = None
audio_url = None
if not is_complete:
# Generate the next question based on the current question index.
#
# Question indices are zero‑based: 0 for the first follow‑up question,
# 1 for the second, and so on. We want the final (third) question
# delivered by this route to always probe the candidate's salary
# expectations and preferred working arrangement. After the user
# answers this question (i.e. when ``question_idx`` becomes 2), the
# interview is considered complete and no further questions are
# generated.
if question_idx == 0:
next_question_text = "Can you describe a challenging project you've worked on and how you overcame the difficulties?"
elif question_idx == 1:
# Salary expectations question for the final interview round
next_question_text = (
"What are your salary expectations? Are you looking for a full-time or part-time role, "
"and do you prefer remote or on-site work?"
)
else:
# Fallback for unexpected indices; ask if the candidate has any questions.
next_question_text = "Do you have any questions about the role or our company?"
# Try to generate audio for the next question
try:
audio_dir = "/tmp/audio"
os.makedirs(audio_dir, exist_ok=True)
filename = f"q_{uuid.uuid4().hex}.wav"
audio_path = os.path.join(audio_dir, filename)
audio_result = edge_tts_to_file_sync(next_question_text, audio_path)
if audio_result and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000:
audio_url = url_for("interview_api.get_audio", filename=filename)
logging.info(f"Next question audio generated: {audio_url}")
except Exception as e:
logging.error(f"Error generating next question audio: {e}")
audio_url = None
return jsonify({
"success": True,
"next_question": next_question_text,
"audio_url": audio_url,
"evaluation": evaluation_result,
"is_complete": is_complete
})
except Exception as e:
logging.error(f"Error in process_answer: {e}")
return jsonify({"error": "Error processing answer. Please try again."}), 500
@interview_api.route("/audio/<string:filename>", methods=["GET"])
@login_required
def get_audio(filename: str):
"""Serve previously generated TTS audio from the /tmp/audio directory."""
try:
# Sanitize filename to prevent directory traversal
safe_name = os.path.basename(filename)
if not safe_name.endswith('.wav'):
return jsonify({"error": "Invalid audio file format."}), 400
audio_path = os.path.join("/tmp/audio", safe_name)
if not os.path.exists(audio_path):
logging.warning(f"Audio file not found: {audio_path}")
return jsonify({"error": "Audio file not found."}), 404
if os.path.getsize(audio_path) == 0:
logging.warning(f"Audio file is empty: {audio_path}")
return jsonify({"error": "Audio file is empty."}), 404
return send_file(
audio_path,
mimetype="audio/wav",
as_attachment=False,
conditional=True # Enable range requests for better audio streaming
)
except Exception as e:
logging.error(f"Error serving audio file {filename}: {e}")
return jsonify({"error": "Error serving audio file."}), 500