Spaces:
Paused
Paused
from __future__ import annotations | |
import json | |
from io import BytesIO | |
import textwrap | |
from typing import List, Dict, Any, Tuple | |
import matplotlib.pyplot as plt | |
from matplotlib.backends.backend_pdf import PdfPages | |
import matplotlib.patches as mpatches | |
from matplotlib.patches import Rectangle, FancyBboxPatch | |
from datetime import datetime | |
def generate_llm_interview_report(application) -> str: | |
"""Generate a human‑readable interview report for a candidate. | |
The report includes the candidate's name and email, job details, | |
application date, a computed skills match summary and placeholder | |
sections for future enhancements. If server‑side storage of | |
question/answer pairs is added later, this function can be updated | |
to incorporate those details. | |
Parameters | |
---------- | |
application : backend.models.database.Application | |
The SQLAlchemy Application instance representing the candidate's | |
job application. Assumed to have related ``job`` and | |
``date_applied`` attributes available. | |
Returns | |
------- | |
str | |
A multi‑line string containing the report contents. | |
""" | |
# Defensive imports to avoid circular dependencies at import time | |
try: | |
from datetime import datetime # noqa: F401 | |
except Exception: | |
pass | |
# Extract candidate skills and job skills | |
try: | |
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {} | |
except Exception: | |
candidate_features = {} | |
candidate_skills: List[str] = candidate_features.get('skills', []) or [] | |
job_skills: List[str] = [] | |
try: | |
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else [] | |
except Exception: | |
job_skills = [] | |
# Compute skills match ratio and label. Normalise to lower case for | |
# comparison and avoid dividing by zero when ``job_skills`` is empty. | |
candidate_set = {s.strip().lower() for s in candidate_skills} | |
job_set = {s.strip().lower() for s in job_skills} | |
common = candidate_set & job_set | |
ratio = len(common) / len(job_set) if job_set else 0.0 | |
if ratio >= 0.75: | |
score_label = 'Excellent' | |
elif ratio >= 0.5: | |
score_label = 'Good' | |
elif ratio >= 0.25: | |
score_label = 'Medium' | |
else: | |
score_label = 'Poor' | |
# Assemble report lines | |
lines: List[str] = [] | |
lines.append('Interview Report') | |
lines.append('=================') | |
lines.append('') | |
lines.append(f'Candidate Name: {application.name}') | |
lines.append(f'Candidate Email: {application.email}') | |
if application.job: | |
lines.append(f'Job Applied: {application.job.role}') | |
lines.append(f'Company: {application.job.company}') | |
else: | |
lines.append('Job Applied: N/A') | |
lines.append('Company: N/A') | |
# Format date_applied if available | |
try: | |
date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A' | |
except Exception: | |
date_str = 'N/A' | |
lines.append(f'Date Applied: {date_str}') | |
lines.append('') | |
lines.append('Skills Match Summary:') | |
# Represent required and candidate skills as comma‑separated lists. Use | |
# title‑case for presentation and handle empty lists gracefully. | |
formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A' | |
formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A' | |
formatted_common = ', '.join(sorted(common)) if common else 'None' | |
lines.append(f' Required Skills: {formatted_job_skills}') | |
lines.append(f' Candidate Skills: {formatted_candidate_skills}') | |
lines.append(f' Skills in Common: {formatted_common}') | |
lines.append(f' Match Ratio: {ratio * 100:.0f}%') | |
lines.append(f' Score: {score_label}') | |
lines.append('') | |
lines.append('Interview Transcript & Evaluation:') | |
try: | |
if application.interview_log: | |
try: | |
qa_log = json.loads(application.interview_log) | |
except Exception: | |
qa_log = [] | |
if qa_log: | |
for idx, entry in enumerate(qa_log, 1): | |
q = entry.get("question", "N/A") | |
a = entry.get("answer", "N/A") | |
# Handle salary question specifically | |
if "salary" in q.lower() and (a == "0$" or a == "0" or a == "$0"): | |
a = "Prefer not to disclose" | |
eval_score = entry.get("evaluation", {}).get("score", "N/A") | |
eval_feedback = entry.get("evaluation", {}).get("feedback", "N/A") | |
lines.append(f"\nQuestion {idx}: {q}") | |
lines.append(f"Answer: {a}") | |
lines.append(f"Score: {eval_score}") | |
lines.append(f"Feedback: {eval_feedback}") | |
else: | |
lines.append("No interview log data recorded.") | |
else: | |
lines.append("No interview log data recorded.") | |
except Exception as e: | |
lines.append(f"Error loading interview log: {e}") | |
return '\n'.join(lines) | |
def create_pdf_report(report_text: str) -> BytesIO: | |
"""Convert a formatted report into a clean, professional A4 PDF.""" | |
buffer = BytesIO() | |
# A4 dimensions in inches (210mm x 297mm) | |
A4_WIDTH = 8.27 | |
A4_HEIGHT = 11.69 | |
# Margins in inches | |
LEFT_MARGIN = 0.75 | |
RIGHT_MARGIN = 0.75 | |
TOP_MARGIN = 0.75 | |
BOTTOM_MARGIN = 0.75 | |
# Calculate content area | |
CONTENT_WIDTH = A4_WIDTH - LEFT_MARGIN - RIGHT_MARGIN | |
CONTENT_HEIGHT = A4_HEIGHT - TOP_MARGIN - BOTTOM_MARGIN | |
# Professional color scheme - single accent color | |
ACCENT_COLOR = '#1e40af' # Dark blue | |
TEXT_COLOR = '#111827' # Dark gray/black | |
LIGHT_GRAY = '#f8fafc' # Light background | |
BORDER_COLOR = '#e2e8f0' # Light border | |
# Parse report data | |
report_data = _parse_report_text(report_text) | |
# Create PDF | |
with PdfPages(buffer) as pdf: | |
# Page 1: Header, Candidate Info, and Skills Summary | |
fig = plt.figure(figsize=(A4_WIDTH, A4_HEIGHT)) | |
fig.patch.set_facecolor('white') | |
# Create main axis | |
ax = fig.add_subplot(111) | |
ax.set_xlim(0, A4_WIDTH) | |
ax.set_ylim(0, A4_HEIGHT) | |
ax.axis('off') | |
# Current Y position (start from top) | |
y_pos = A4_HEIGHT - TOP_MARGIN | |
# === HEADER SECTION === | |
# Clean header with company info | |
ax.text(LEFT_MARGIN, y_pos, 'INTERVIEW ASSESSMENT REPORT', | |
fontsize=20, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif') | |
# Date | |
current_date = datetime.now().strftime('%B %d, %Y') | |
ax.text(A4_WIDTH - RIGHT_MARGIN, y_pos, current_date, | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif', | |
horizontalalignment='right') | |
y_pos -= 0.8 | |
# === CANDIDATE INFO AND OVERALL SCORE === | |
# Large overall score box (prominent) | |
overall_score = _calculate_overall_score(report_data) | |
score_color = _get_score_color(overall_score['label']) | |
# Score box on the right | |
score_box_width = 2.5 | |
score_box_height = 1.8 | |
score_x = A4_WIDTH - RIGHT_MARGIN - score_box_width | |
# Score background | |
score_rect = FancyBboxPatch( | |
(score_x, y_pos - score_box_height), score_box_width, score_box_height, | |
boxstyle="round,pad=0.1", | |
facecolor=LIGHT_GRAY, | |
edgecolor=ACCENT_COLOR, | |
linewidth=2 | |
) | |
ax.add_patch(score_rect) | |
# Large score percentage | |
ax.text(score_x + score_box_width/2, y_pos - 0.6, f"{overall_score['percentage']:.0f}%", | |
fontsize=32, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif', | |
horizontalalignment='center', verticalalignment='center') | |
# Score label | |
ax.text(score_x + score_box_width/2, y_pos - 1.2, 'OVERALL SCORE', | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif', | |
horizontalalignment='center', fontweight='bold') | |
ax.text(score_x + score_box_width/2, y_pos - 1.5, overall_score['label'].upper(), | |
fontsize=14, fontweight='bold', color=score_color, fontfamily='sans-serif', | |
horizontalalignment='center') | |
# Candidate information on the left | |
info_width = CONTENT_WIDTH - score_box_width - 0.5 | |
# Candidate name (large) | |
ax.text(LEFT_MARGIN, y_pos - 0.3, report_data['candidate_name'], | |
fontsize=18, fontweight='bold', color=TEXT_COLOR, fontfamily='sans-serif') | |
# Position and company | |
ax.text(LEFT_MARGIN, y_pos - 0.7, f"{report_data['job_role']} • {report_data['company']}", | |
fontsize=12, color=TEXT_COLOR, fontfamily='sans-serif') | |
# Email and date | |
ax.text(LEFT_MARGIN, y_pos - 1.0, f"Email: {report_data['candidate_email']}", | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif') | |
ax.text(LEFT_MARGIN, y_pos - 1.3, f"Application Date: {report_data['date_applied']}", | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif') | |
y_pos -= 2.5 | |
# === SKILLS MATCH SUMMARY === | |
# Section header | |
ax.text(LEFT_MARGIN, y_pos, 'SKILLS MATCH SUMMARY', | |
fontsize=14, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif') | |
# Underline | |
ax.plot([LEFT_MARGIN, LEFT_MARGIN + 3], [y_pos - 0.1, y_pos - 0.1], | |
color=ACCENT_COLOR, linewidth=2) | |
y_pos -= 0.5 | |
skills_data = report_data['skills_match'] | |
# Skills match percentage bar | |
bar_width = CONTENT_WIDTH - 1 | |
bar_height = 0.3 | |
# Background bar | |
bg_rect = Rectangle((LEFT_MARGIN + 0.5, y_pos - bar_height), bar_width, bar_height, | |
facecolor=LIGHT_GRAY, edgecolor=BORDER_COLOR) | |
ax.add_patch(bg_rect) | |
# Progress bar | |
progress_width = bar_width * (skills_data['ratio'] / 100) | |
progress_rect = Rectangle((LEFT_MARGIN + 0.5, y_pos - bar_height), progress_width, bar_height, | |
facecolor=ACCENT_COLOR, edgecolor='none') | |
ax.add_patch(progress_rect) | |
# Percentage text | |
ax.text(LEFT_MARGIN + 0.5 + bar_width/2, y_pos - bar_height/2, | |
f"{skills_data['ratio']:.0f}% Skills Match", | |
fontsize=11, fontweight='bold', color='white', fontfamily='sans-serif', | |
horizontalalignment='center', verticalalignment='center') | |
y_pos -= 0.8 | |
# Skills details (simplified) | |
required_text = f"Required Skills: {skills_data['required']}" | |
for line in textwrap.wrap(required_text, width=85): | |
ax.text(LEFT_MARGIN, y_pos, line, | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif') | |
y_pos -= 0.3 | |
y_pos -= 0.3 | |
candidate_text = f"Candidate Skills: {skills_data['candidate']}" | |
for line in textwrap.wrap(candidate_text, width=85): | |
ax.text(LEFT_MARGIN, y_pos, line, | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif') | |
y_pos -= 0.3 | |
y_pos -= 0.3 | |
matching_text = f"Matching Skills: {skills_data['common']}" | |
for line in textwrap.wrap(matching_text, width=85): | |
ax.text(LEFT_MARGIN, y_pos, line, | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif') | |
y_pos -= 0.3 | |
y_pos -= 0.8 | |
# === INTERVIEW TRANSCRIPT PREVIEW === | |
if report_data['qa_log']: | |
ax.text(LEFT_MARGIN, y_pos, 'INTERVIEW TRANSCRIPT', | |
fontsize=14, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif') | |
# Underline | |
ax.plot([LEFT_MARGIN, LEFT_MARGIN + 3], [y_pos - 0.1, y_pos - 0.1], | |
color=ACCENT_COLOR, linewidth=2) | |
y_pos -= 0.5 | |
# Show up to 3 Q&As on the first page. The number actually | |
# displayed depends on available space. We track how many | |
# questions we render so the remainder can be displayed on | |
# subsequent pages without skipping any entries. | |
max_qa_on_page1 = min(3, len(report_data['qa_log'])) | |
qa_count_on_page1 = 0 | |
for i in range(max_qa_on_page1): | |
qa = report_data['qa_log'][i] | |
# Check if we have space for the next Q&A. If not, break | |
# early. The 2.2 constant accounts for the approximate | |
# vertical space needed for a question, answer, evaluation | |
# and some spacing. If insufficient space remains, we | |
# stop adding to this page. | |
if y_pos < BOTTOM_MARGIN + 2.2: | |
break | |
# Question number starts at 1 on the first page | |
question_text = f"Q{qa_count_on_page1 + 1}: {qa['question']}" | |
for line in textwrap.wrap(question_text, width=85): | |
ax.text(LEFT_MARGIN, y_pos, line, | |
fontsize=11, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif') | |
y_pos -= 0.25 | |
y_pos -= 0.15 # extra spacing after question block | |
# Answer. Mask salary disclosure if applicable. | |
answer_text = qa['answer'] | |
if "salary" in qa['question'].lower() and (answer_text == "0$" or answer_text == "0" or answer_text == "$0"): | |
answer_text = "Prefer not to disclose" | |
wrapped_answer = textwrap.fill(answer_text, width=85) | |
answer_lines = wrapped_answer.split('\n')[:2] # Max 2 lines | |
for line in answer_lines: | |
ax.text(LEFT_MARGIN + 0.3, y_pos, line, | |
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif') | |
y_pos -= 0.25 | |
# Evaluation | |
eval_color = _get_score_color(qa['score']) | |
ax.text(LEFT_MARGIN + 0.3, y_pos, f"Evaluation: {qa['score']}", | |
fontsize=10, fontweight='bold', color=eval_color, fontfamily='sans-serif') | |
y_pos -= 0.6 | |
qa_count_on_page1 += 1 | |
# Save first page | |
pdf.savefig(fig, bbox_inches='tight', pad_inches=0) | |
plt.close(fig) | |
# === PAGE 2: REMAINING TRANSCRIPT === | |
# Render the remainder of the Q&A log on additional pages. Use | |
# qa_count_on_page1 (actual number shown on the first page) rather | |
# than the theoretical max_qa_on_page1 so that no entries are | |
# inadvertently skipped when the first page runs out of space. | |
if report_data['qa_log'] and len(report_data['qa_log']) > qa_count_on_page1: | |
_create_transcript_page( | |
pdf, | |
report_data['qa_log'][qa_count_on_page1:], # Continue from the next unanswered question | |
A4_WIDTH, A4_HEIGHT, | |
LEFT_MARGIN, RIGHT_MARGIN, TOP_MARGIN, BOTTOM_MARGIN, | |
ACCENT_COLOR, TEXT_COLOR, | |
start_index=qa_count_on_page1 + 1 # Correct numbering | |
) | |
buffer.seek(0) | |
return buffer | |
def _parse_report_text(report_text: str) -> Dict[str, Any]: | |
"""Parse the text report into structured data.""" | |
lines = report_text.split('\n') | |
data = { | |
'candidate_name': 'N/A', | |
'candidate_email': 'N/A', | |
'job_role': 'N/A', | |
'company': 'N/A', | |
'date_applied': 'N/A', | |
'skills_match': { | |
'required': 'N/A', | |
'candidate': 'N/A', | |
'common': 'N/A', | |
'ratio': 0, | |
'score': 'N/A' | |
}, | |
'qa_log': [] | |
} | |
current_question = None | |
for line in lines: | |
line = line.strip() | |
if line.startswith('Candidate Name:'): | |
data['candidate_name'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Candidate Email:'): | |
data['candidate_email'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Job Applied:'): | |
data['job_role'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Company:'): | |
data['company'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Date Applied:'): | |
data['date_applied'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Required Skills:'): | |
data['skills_match']['required'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Candidate Skills:'): | |
data['skills_match']['candidate'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Skills in Common:'): | |
data['skills_match']['common'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Match Ratio:'): | |
try: | |
data['skills_match']['ratio'] = float(line.split(':')[1].strip().rstrip('%')) | |
except: | |
data['skills_match']['ratio'] = 0 | |
elif line.startswith('Score:'): | |
# Distinguish between the overall skills match score and per‑question scores. | |
# If no question has been started yet (i.e. current_question is None), | |
# interpret this Score line as the skills match score. Otherwise it | |
# belongs to the most recent question. | |
score_value = line.split(':', 1)[1].strip() | |
if current_question is None: | |
data['skills_match']['score'] = score_value | |
else: | |
current_question['score'] = score_value | |
continue | |
elif line.startswith('Question'): | |
if current_question: | |
data['qa_log'].append(current_question) | |
current_question = { | |
'question': line.split(':', 1)[1].strip() if ':' in line else line, | |
'answer': '', | |
'score': '', | |
'feedback': '' | |
} | |
elif line.startswith('Answer:') and current_question: | |
current_question['answer'] = line.split(':', 1)[1].strip() | |
elif line.startswith('Feedback:') and current_question: | |
current_question['feedback'] = line.split(':', 1)[1].strip() | |
if current_question: | |
data['qa_log'].append(current_question) | |
return data | |
def _calculate_overall_score(report_data: Dict[str, Any]) -> Dict[str, Any]: | |
"""Calculate overall score from skills match and QA scores.""" | |
# Skills match contributes 40% | |
skills_ratio = report_data['skills_match']['ratio'] / 100 | |
# QA scores contribute 60% | |
qa_scores = [] | |
for qa in report_data['qa_log']: | |
score_text = qa['score'].lower() | |
if 'excellent' in score_text or '5' in score_text or '10' in score_text: | |
qa_scores.append(1.0) | |
elif 'good' in score_text or '4' in score_text or '8' in score_text or '9' in score_text: | |
qa_scores.append(0.8) | |
elif 'satisfactory' in score_text or 'medium' in score_text or '3' in score_text or '6' in score_text or '7' in score_text: | |
qa_scores.append(0.6) | |
elif 'needs improvement' in score_text or 'poor' in score_text or '2' in score_text or '4' in score_text or '5' in score_text: | |
qa_scores.append(0.4) | |
else: | |
qa_scores.append(0.2) | |
qa_average = sum(qa_scores) / len(qa_scores) if qa_scores else 0.5 | |
# Calculate weighted average | |
overall = (skills_ratio * 0.4) + (qa_average * 0.6) | |
percentage = overall * 100 | |
if overall >= 0.8: | |
label = 'Excellent' | |
elif overall >= 0.65: | |
label = 'Good' | |
elif overall >= 0.45: | |
label = 'Satisfactory' | |
else: | |
label = 'Needs Improvement' | |
return {'percentage': percentage, 'label': label} | |
def _get_score_color(score_label: str) -> str: | |
"""Get color based on score label.""" | |
score_label = score_label.lower() | |
if 'excellent' in score_label: | |
return '#059669' # Green | |
elif 'good' in score_label: | |
return '#2563eb' # Blue | |
elif 'medium' in score_label or 'satisfactory' in score_label: | |
return '#d97706' # Orange | |
else: | |
return '#dc2626' # Red | |
def _create_transcript_page(pdf, qa_log: List[Dict], page_width: float, page_height: float, | |
left_margin: float, right_margin: float, top_margin: float, bottom_margin: float, | |
accent_color: str, text_color: str, start_index: int = 1): | |
"""Create a clean page for remaining interview transcript.""" | |
content_width = page_width - left_margin - right_margin | |
fig = plt.figure(figsize=(page_width, page_height)) | |
fig.patch.set_facecolor('white') | |
ax = fig.add_subplot(111) | |
ax.set_xlim(0, page_width) | |
ax.set_ylim(0, page_height) | |
ax.axis('off') | |
# Start from top | |
y_pos = page_height - top_margin | |
# Page header | |
ax.text(left_margin, y_pos, 'INTERVIEW TRANSCRIPT (CONTINUED)', | |
fontsize=14, fontweight='bold', color=accent_color, fontfamily='sans-serif') | |
# Underline | |
ax.plot([left_margin, left_margin + 4], [y_pos - 0.1, y_pos - 0.1], | |
color=accent_color, linewidth=2) | |
y_pos -= 0.8 | |
# Process remaining Q&As | |
for i, qa in enumerate(qa_log): | |
# Check if we have space for this Q&A | |
if y_pos < bottom_margin + 1.5: | |
break | |
# Question | |
question_text = f"Q{start_index + i}: {qa['question']}" | |
wrapped_question = textwrap.fill(question_text, width=85) | |
question_lines = wrapped_question.split('\n') | |
for line in question_lines: | |
ax.text(left_margin, y_pos, line, | |
fontsize=11, fontweight='bold', color=accent_color, fontfamily='sans-serif') | |
y_pos -= 0.3 | |
y_pos -= 0.1 | |
# Answer | |
answer_text = qa['answer'] | |
if "salary" in qa['question'].lower() and (answer_text == "0$" or answer_text == "0" or answer_text == "$0"): | |
answer_text = "Prefer not to disclose" | |
wrapped_answer = textwrap.fill(answer_text, width=80) | |
answer_lines = wrapped_answer.split('\n') | |
for line in answer_lines[:3]: # Max 3 lines per answer | |
ax.text(left_margin + 0.3, y_pos, line, | |
fontsize=10, color=text_color, fontfamily='sans-serif') | |
y_pos -= 0.25 | |
# Evaluation | |
eval_color = _get_score_color(qa['score']) | |
ax.text(left_margin + 0.3, y_pos, f"Evaluation: {qa['score']}", | |
fontsize=10, fontweight='bold', color=eval_color, fontfamily='sans-serif') | |
y_pos -= 0.2 | |
# Feedback (if available and space permits) | |
if qa['feedback'] and qa['feedback'] != 'N/A' and y_pos > bottom_margin + 0.8: | |
feedback_text = f"Feedback: {qa['feedback']}" | |
wrapped_feedback = textwrap.fill(feedback_text, width=75) | |
feedback_lines = wrapped_feedback.split('\n')[:2] # Max 2 lines | |
for line in feedback_lines: | |
ax.text(left_margin + 0.3, y_pos, line, | |
fontsize=9, color='#6b7280', fontfamily='sans-serif', style='italic') | |
y_pos -= 0.2 | |
y_pos -= 0.4 | |
# Add separator line between questions | |
if i < len(qa_log) - 1 and y_pos > bottom_margin + 1: | |
ax.plot([left_margin + 0.5, left_margin + content_width - 0.5], | |
[y_pos + 0.1, y_pos + 0.1], | |
color='#e5e7eb', linewidth=0.5, linestyle='--') | |
y_pos -= 0.3 | |
# Save page | |
pdf.savefig(fig, bbox_inches='tight', pad_inches=0) | |
plt.close(fig) | |
__all__ = ['generate_llm_interview_report', 'create_pdf_report'] | |