Spaces:
Paused
Paused
Commit
·
288175b
1
Parent(s):
c0dac84
resume parser updated
Browse files- backend/services/resume_parser.py +54 -103
backend/services/resume_parser.py
CHANGED
@@ -1,112 +1,63 @@
|
|
1 |
-
import
|
2 |
from pathlib import Path
|
|
|
|
|
3 |
from pdfminer.high_level import extract_text as pdf_extract_text
|
4 |
from docx import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
path = Path(file_path)
|
13 |
-
|
14 |
-
if path.suffix.lower() == ".pdf":
|
15 |
-
text = pdf_extract_text(file_path)
|
16 |
-
return re.sub(r'\s+', ' ', text).strip()
|
17 |
-
elif path.suffix.lower() == ".docx":
|
18 |
-
doc = Document(file_path)
|
19 |
-
return "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
|
20 |
-
else:
|
21 |
-
raise ValueError("Unsupported file format")
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
for line in first_lines:
|
29 |
-
# Simple name pattern (2-4 words, all starting with capital)
|
30 |
-
if re.match(r'^[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,3}$', line):
|
31 |
-
if not any(word.lower() in ['resume', 'cv', 'curriculum'] for word in line.split()):
|
32 |
-
return line
|
33 |
-
|
34 |
-
# Fallback: return first non-empty line that looks like a name
|
35 |
-
for line in first_lines:
|
36 |
-
if 2 <= len(line.split()) <= 4 and line[0].isupper():
|
37 |
-
return line
|
38 |
-
|
39 |
-
return "Not Found"
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"skills": [],
|
45 |
-
"education": [],
|
46 |
-
"experience": []
|
47 |
-
}
|
48 |
-
|
49 |
-
# Extract skills
|
50 |
-
skills_match = re.search(
|
51 |
-
r'(?:skills|technologies|expertise)[:\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
52 |
-
text, re.IGNORECASE
|
53 |
-
)
|
54 |
-
if skills_match:
|
55 |
-
skills_text = skills_match.group(1)
|
56 |
-
results["skills"] = [s.strip() for s in re.split(r'[,;]', skills_text) if s.strip()]
|
57 |
-
|
58 |
-
# Extract education
|
59 |
-
edu_match = re.search(
|
60 |
-
r'(?:education|degrees?)[:\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
61 |
-
text, re.IGNORECASE
|
62 |
-
)
|
63 |
-
if edu_match:
|
64 |
-
results["education"] = [e.strip() for e in edu_match.group(1).split('\n') if e.strip()]
|
65 |
-
|
66 |
-
# Extract experience
|
67 |
-
exp_match = re.search(
|
68 |
-
r'(?:experience|work history|employment)[:\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
69 |
-
text, re.IGNORECASE
|
70 |
-
)
|
71 |
-
if exp_match:
|
72 |
-
results["experience"] = [x.strip() for x in exp_match.group(1).split('\n') if x.strip()]
|
73 |
-
|
74 |
-
return results
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
"skills": [],
|
85 |
-
"education": [],
|
86 |
-
"experience": []
|
87 |
-
}
|
88 |
-
|
89 |
-
name = self.extract_name(text)
|
90 |
-
sections = self.extract_sections(text)
|
91 |
-
|
92 |
-
return {
|
93 |
-
"name": name,
|
94 |
-
"skills": sections["skills"][:10], # Limit to 10 skills
|
95 |
-
"education": sections["education"][:3], # Limit to 3 items
|
96 |
-
"experience": sections["experience"][:3] # Limit to 3 items
|
97 |
-
}
|
98 |
-
|
99 |
-
except Exception as e:
|
100 |
-
return {
|
101 |
-
"name": f"Error: {str(e)}",
|
102 |
-
"skills": [],
|
103 |
-
"education": [],
|
104 |
-
"experience": []
|
105 |
-
}
|
106 |
|
107 |
-
|
108 |
-
resume_parser = ResumeParser()
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
from pathlib import Path
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
from pdfminer.high_level import extract_text as pdf_extract_text
|
6 |
from docx import Document
|
7 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
8 |
+
|
9 |
+
# --------------------
|
10 |
+
# Load PyTorch Resume NER Model
|
11 |
+
# --------------------
|
12 |
+
MODEL_NAME = "manishiitg/resume-ner" # Works with PyTorch on Hugging Face Spaces
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
15 |
+
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
16 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
17 |
+
|
18 |
+
# --------------------
|
19 |
+
# Extract Text from PDF/DOCX
|
20 |
+
# --------------------
|
21 |
+
def extract_text(file_path: str) -> str:
|
22 |
+
path = Path(file_path)
|
23 |
+
if path.suffix.lower() == ".pdf":
|
24 |
+
return pdf_extract_text(file_path)
|
25 |
+
elif path.suffix.lower() == ".docx":
|
26 |
+
doc = Document(file_path)
|
27 |
+
return "\n".join([p.text for p in doc.paragraphs])
|
28 |
+
else:
|
29 |
+
raise ValueError("Unsupported file format")
|
30 |
|
31 |
+
# --------------------
|
32 |
+
# Parse Resume (returns only: full name, skills, education, experience)
|
33 |
+
# --------------------
|
34 |
+
def parse_resume(file_path: str, filename: str = None) -> Dict[str, str]:
|
35 |
+
text = extract_text(file_path)
|
36 |
+
entities = ner_pipeline(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
name_parts = []
|
39 |
+
skills = []
|
40 |
+
education = []
|
41 |
+
experience = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
for ent in entities:
|
44 |
+
label = ent["entity_group"].upper()
|
45 |
+
value = ent["word"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
if label == "NAME":
|
48 |
+
name_parts.append(value)
|
49 |
+
elif label == "SKILL":
|
50 |
+
skills.append(value)
|
51 |
+
elif label in ["EDUCATION", "DEGREE"]:
|
52 |
+
education.append(value)
|
53 |
+
elif label in ["EXPERIENCE", "JOB", "ROLE", "POSITION"]:
|
54 |
+
experience.append(value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
full_name = " ".join(dict.fromkeys(name_parts)) or "Not Found"
|
|
|
57 |
|
58 |
+
return {
|
59 |
+
"name": full_name,
|
60 |
+
"skills": ", ".join(dict.fromkeys(skills)) or "Not Found",
|
61 |
+
"education": ", ".join(dict.fromkeys(education)) or "Not Found",
|
62 |
+
"experience": ", ".join(dict.fromkeys(experience)) or "Not Found"
|
63 |
+
}
|