Spaces:
Paused
Paused
Commit
·
c0dac84
1
Parent(s):
f2a1cfa
updated
Browse files- backend/services/resume_parser.py +73 -265
backend/services/resume_parser.py
CHANGED
@@ -1,304 +1,112 @@
|
|
1 |
-
import json
|
2 |
import re
|
3 |
-
import os
|
4 |
from pathlib import Path
|
5 |
-
from typing import Dict, List, Optional, Union
|
6 |
from pdfminer.high_level import extract_text as pdf_extract_text
|
7 |
from docx import Document
|
8 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
9 |
-
import logging
|
10 |
-
|
11 |
-
# Set up logging
|
12 |
-
logging.basicConfig(level=logging.INFO)
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
|
15 |
class ResumeParser:
|
16 |
def __init__(self):
|
17 |
-
|
18 |
-
self.model_loaded = False
|
19 |
-
self._load_model()
|
20 |
|
21 |
-
def _load_model(self):
|
22 |
-
"""Load the NER model with error handling and fallbacks"""
|
23 |
-
try:
|
24 |
-
# Try the original model first
|
25 |
-
MODEL_NAME = "manishiitg/resume-ner"
|
26 |
-
logger.info(f"Attempting to load model: {MODEL_NAME}")
|
27 |
-
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
29 |
-
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
30 |
-
self.ner_pipeline = pipeline(
|
31 |
-
"ner",
|
32 |
-
model=model,
|
33 |
-
tokenizer=tokenizer,
|
34 |
-
aggregation_strategy="simple",
|
35 |
-
device=0 if os.environ.get("L4_GPU", "false").lower() == "true" else -1
|
36 |
-
)
|
37 |
-
self.model_loaded = True
|
38 |
-
logger.info("Model loaded successfully")
|
39 |
-
|
40 |
-
except Exception as e:
|
41 |
-
logger.warning(f"Failed to load primary model: {e}")
|
42 |
-
try:
|
43 |
-
# Fallback to a more reliable model
|
44 |
-
MODEL_NAME = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
45 |
-
logger.info(f"Trying fallback model: {MODEL_NAME}")
|
46 |
-
|
47 |
-
self.ner_pipeline = pipeline(
|
48 |
-
"ner",
|
49 |
-
model=MODEL_NAME,
|
50 |
-
aggregation_strategy="simple",
|
51 |
-
device=0 if os.environ.get("L4_GPU", "false").lower() == "true" else -1
|
52 |
-
)
|
53 |
-
self.model_loaded = True
|
54 |
-
logger.info("Fallback model loaded successfully")
|
55 |
-
|
56 |
-
except Exception as e2:
|
57 |
-
logger.error(f"Failed to load fallback model: {e2}")
|
58 |
-
self.model_loaded = False
|
59 |
-
|
60 |
def extract_text(self, file_path: str) -> str:
|
61 |
-
"""Extract text from PDF or DOCX files
|
62 |
-
|
63 |
-
path = Path(file_path)
|
64 |
-
|
65 |
-
if not path.exists():
|
66 |
-
raise FileNotFoundError(f"File not found: {file_path}")
|
67 |
-
|
68 |
-
if path.suffix.lower() == ".pdf":
|
69 |
-
text = pdf_extract_text(file_path)
|
70 |
-
# Clean up PDF text extraction artifacts
|
71 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
72 |
-
logger.info(f"Extracted {len(text)} characters from PDF")
|
73 |
-
return text
|
74 |
-
|
75 |
-
elif path.suffix.lower() == ".docx":
|
76 |
-
doc = Document(file_path)
|
77 |
-
text = "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
|
78 |
-
logger.info(f"Extracted {len(text)} characters from DOCX")
|
79 |
-
return text
|
80 |
-
|
81 |
-
else:
|
82 |
-
raise ValueError(f"Unsupported file format: {path.suffix}")
|
83 |
-
|
84 |
-
except Exception as e:
|
85 |
-
logger.error(f"Error extracting text: {e}")
|
86 |
-
raise
|
87 |
-
|
88 |
-
def extract_with_regex(self, text: str) -> Dict[str, List[str]]:
|
89 |
-
"""Improved regex patterns for extraction"""
|
90 |
-
patterns = {
|
91 |
-
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
|
92 |
-
'phone': r'(?:\+?\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}',
|
93 |
-
'skills': r'(?i)(?:skills?|technologies?|tools?|expertise)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
94 |
-
'education': r'(?i)(?:education|degree|university|college|bachelor|master|phd)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
95 |
-
'experience': r'(?i)(?:experience|work\shistory|employment|job\shistory)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
96 |
-
'name': r'^(?!(resume|cv|curriculum vitae|\d))[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+'
|
97 |
-
}
|
98 |
-
|
99 |
-
results = {}
|
100 |
-
for key, pattern in patterns.items():
|
101 |
-
matches = re.findall(pattern, text, re.MULTILINE | re.IGNORECASE)
|
102 |
-
if key == 'name' and matches:
|
103 |
-
# Take the first likely name match
|
104 |
-
results[key] = [matches[0].strip()]
|
105 |
-
else:
|
106 |
-
# Clean and filter matches
|
107 |
-
cleaned = [m.strip() for m in matches if m.strip()]
|
108 |
-
if cleaned:
|
109 |
-
results[key] = cleaned
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
def
|
114 |
-
"""
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
# Fallback to line-based approach
|
126 |
-
lines = text.split('\n')
|
127 |
-
for line in lines[:10]: # Check first 10 lines
|
128 |
-
line = line.strip()
|
129 |
-
if line and 2 <= len(line.split()) <= 4:
|
130 |
-
# Check if it looks like a name (not email, phone, etc.)
|
131 |
-
if not re.search(r'[@\d+\-\(\)]', line):
|
132 |
-
if line[0].isupper() and not line.lower().startswith(('resume', 'cv', 'curriculum')):
|
133 |
-
return line
|
134 |
return "Not Found"
|
135 |
|
136 |
-
def
|
137 |
-
"""
|
138 |
results = {
|
139 |
-
"name": [],
|
140 |
"skills": [],
|
141 |
"education": [],
|
142 |
"experience": []
|
143 |
}
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
if confidence < 0.7 or not value:
|
154 |
-
continue
|
155 |
-
|
156 |
-
# Normalize labels
|
157 |
-
if label in ["PERSON", "PER", "NAME"]:
|
158 |
-
results["name"].append(value)
|
159 |
-
elif label in ["SKILL", "TECH", "TECHNOLOGY"]:
|
160 |
-
results["skills"].append(value)
|
161 |
-
elif label in ["EDUCATION", "DEGREE", "EDU", "ORG"] and "university" not in value.lower():
|
162 |
-
results["education"].append(value)
|
163 |
-
elif label in ["EXPERIENCE", "JOB", "ROLE", "POSITION", "WORK"]:
|
164 |
-
results["experience"].append(value)
|
165 |
-
|
166 |
-
# Deduplicate and clean results
|
167 |
-
for key in results:
|
168 |
-
results[key] = list(dict.fromkeys(results[key])) # Preserve order
|
169 |
-
|
170 |
-
return results
|
171 |
-
|
172 |
-
def merge_results(self, ner_results: Dict, regex_results: Dict) -> Dict[str, str]:
|
173 |
-
"""Merge NER and regex results intelligently"""
|
174 |
-
merged = {
|
175 |
-
"name": "Not Found",
|
176 |
-
"email": "Not Found",
|
177 |
-
"phone": "Not Found",
|
178 |
-
"skills": "Not Found",
|
179 |
-
"education": "Not Found",
|
180 |
-
"experience": "Not Found"
|
181 |
-
}
|
182 |
|
183 |
-
#
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
188 |
|
189 |
-
#
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
all_skills = []
|
197 |
-
if ner_results.get("skills"):
|
198 |
-
all_skills.extend(ner_results["skills"])
|
199 |
-
if regex_results.get("skills"):
|
200 |
-
all_skills.extend(regex_results["skills"])
|
201 |
-
if all_skills:
|
202 |
-
merged["skills"] = ", ".join(list(dict.fromkeys(all_skills))[:10]) # Limit to 10 skills
|
203 |
-
|
204 |
-
# Education - combine both sources
|
205 |
-
all_edu = []
|
206 |
-
if ner_results.get("education"):
|
207 |
-
all_edu.extend(ner_results["education"])
|
208 |
-
if regex_results.get("education"):
|
209 |
-
all_edu.extend(regex_results["education"])
|
210 |
-
if all_edu:
|
211 |
-
merged["education"] = ", ".join(list(dict.fromkeys(all_edu))[:3] # Limit to 3 items
|
212 |
-
|
213 |
-
# Experience - combine both sources
|
214 |
-
all_exp = []
|
215 |
-
if ner_results.get("experience"):
|
216 |
-
all_exp.extend(ner_results["experience"])
|
217 |
-
if regex_results.get("experience"):
|
218 |
-
all_exp.extend(regex_results["experience"])
|
219 |
-
if all_exp:
|
220 |
-
merged["experience"] = ", ".join(list(dict.fromkeys(all_exp))[:3] # Limit to 3 items
|
221 |
-
|
222 |
-
return merged
|
223 |
|
224 |
-
def parse_resume(self, file_path: str
|
225 |
-
"""
|
226 |
try:
|
227 |
-
# Extract text
|
228 |
text = self.extract_text(file_path)
|
229 |
|
230 |
if not text or len(text.strip()) < 10:
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
"
|
238 |
-
"
|
239 |
-
"
|
240 |
-
"experience": []
|
241 |
}
|
242 |
|
243 |
-
# Method 1: Try NER model if available
|
244 |
-
if self.model_loaded and self.ner_pipeline:
|
245 |
-
try:
|
246 |
-
logger.info("Using NER model for extraction")
|
247 |
-
entities = self.ner_pipeline(text[:5120]) # Limit input size for NER
|
248 |
-
ner_results = self.process_ner_entities(entities)
|
249 |
-
logger.info(f"NER results: {json.dumps(ner_results, indent=2)}")
|
250 |
-
except Exception as e:
|
251 |
-
logger.warning(f"NER extraction failed: {e}")
|
252 |
-
|
253 |
-
# Method 2: Regex extraction
|
254 |
-
logger.info("Using regex patterns for extraction")
|
255 |
-
regex_results = self.extract_with_regex(text)
|
256 |
-
logger.info(f"Regex results: {json.dumps(regex_results, indent=2)}")
|
257 |
-
|
258 |
-
# Method 3: Name extraction fallback
|
259 |
-
if not ner_results.get("name") and not regex_results.get("name"):
|
260 |
-
name = self.extract_name_from_text(text)
|
261 |
-
if name != "Not Found":
|
262 |
-
regex_results["name"] = [name]
|
263 |
-
|
264 |
-
# Merge all results
|
265 |
-
final_results = self.merge_results(ner_results, regex_results)
|
266 |
-
|
267 |
-
# If name still not found, try filename
|
268 |
-
if final_results["name"] == "Not Found" and filename:
|
269 |
-
# Try to extract name from filename (common pattern: "Firstname Lastname - Resume.pdf")
|
270 |
-
name_from_file = re.sub(r'[-_].*', '', filename).strip()
|
271 |
-
if len(name_from_file.split()) >= 2:
|
272 |
-
final_results["name"] = name_from_file
|
273 |
-
|
274 |
-
logger.info("Parsing completed successfully")
|
275 |
-
return final_results
|
276 |
-
|
277 |
except Exception as e:
|
278 |
-
logger.error(f"Error parsing resume: {e}")
|
279 |
return {
|
280 |
-
"name": "Error",
|
281 |
-
"
|
282 |
-
"
|
283 |
-
"
|
284 |
-
"education": "Error",
|
285 |
-
"experience": "Error",
|
286 |
-
"error": str(e)
|
287 |
}
|
288 |
|
289 |
-
#
|
290 |
resume_parser = ResumeParser()
|
291 |
|
292 |
-
def parse_resume(file_path: str
|
293 |
-
"""
|
294 |
-
return resume_parser.parse_resume(file_path
|
295 |
-
|
296 |
-
if __name__ == "__main__":
|
297 |
-
# Test the parser
|
298 |
-
test_file = input("Enter path to resume file: ")
|
299 |
-
if os.path.exists(test_file):
|
300 |
-
results = parse_resume(test_file, os.path.basename(test_file))
|
301 |
-
print("\nParsing Results:")
|
302 |
-
print(json.dumps(results, indent=2))
|
303 |
-
else:
|
304 |
-
print("File not found")
|
|
|
|
|
1 |
import re
|
|
|
2 |
from pathlib import Path
|
|
|
3 |
from pdfminer.high_level import extract_text as pdf_extract_text
|
4 |
from docx import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class ResumeParser:
|
7 |
def __init__(self):
|
8 |
+
pass
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def extract_text(self, file_path: str) -> str:
|
11 |
+
"""Extract text from PDF or DOCX files"""
|
12 |
+
path = Path(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if path.suffix.lower() == ".pdf":
|
15 |
+
text = pdf_extract_text(file_path)
|
16 |
+
return re.sub(r'\s+', ' ', text).strip()
|
17 |
+
elif path.suffix.lower() == ".docx":
|
18 |
+
doc = Document(file_path)
|
19 |
+
return "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
|
20 |
+
else:
|
21 |
+
raise ValueError("Unsupported file format")
|
22 |
|
23 |
+
def extract_name(self, text: str) -> str:
|
24 |
+
"""Extract name from resume text"""
|
25 |
+
# Try to find name at the beginning of document
|
26 |
+
first_lines = [line.strip() for line in text.split('\n')[:10] if line.strip()]
|
27 |
+
|
28 |
+
for line in first_lines:
|
29 |
+
# Simple name pattern (2-4 words, all starting with capital)
|
30 |
+
if re.match(r'^[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,3}$', line):
|
31 |
+
if not any(word.lower() in ['resume', 'cv', 'curriculum'] for word in line.split()):
|
32 |
+
return line
|
33 |
|
34 |
+
# Fallback: return first non-empty line that looks like a name
|
35 |
+
for line in first_lines:
|
36 |
+
if 2 <= len(line.split()) <= 4 and line[0].isupper():
|
37 |
+
return line
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
return "Not Found"
|
40 |
|
41 |
+
def extract_sections(self, text: str) -> dict:
|
42 |
+
"""Extract skills, education, and experience using regex"""
|
43 |
results = {
|
|
|
44 |
"skills": [],
|
45 |
"education": [],
|
46 |
"experience": []
|
47 |
}
|
48 |
|
49 |
+
# Extract skills
|
50 |
+
skills_match = re.search(
|
51 |
+
r'(?:skills|technologies|expertise)[:\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
52 |
+
text, re.IGNORECASE
|
53 |
+
)
|
54 |
+
if skills_match:
|
55 |
+
skills_text = skills_match.group(1)
|
56 |
+
results["skills"] = [s.strip() for s in re.split(r'[,;]', skills_text) if s.strip()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Extract education
|
59 |
+
edu_match = re.search(
|
60 |
+
r'(?:education|degrees?)[:\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
61 |
+
text, re.IGNORECASE
|
62 |
+
)
|
63 |
+
if edu_match:
|
64 |
+
results["education"] = [e.strip() for e in edu_match.group(1).split('\n') if e.strip()]
|
65 |
|
66 |
+
# Extract experience
|
67 |
+
exp_match = re.search(
|
68 |
+
r'(?:experience|work history|employment)[:\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
69 |
+
text, re.IGNORECASE
|
70 |
+
)
|
71 |
+
if exp_match:
|
72 |
+
results["experience"] = [x.strip() for x in exp_match.group(1).split('\n') if x.strip()]
|
73 |
|
74 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
def parse_resume(self, file_path: str) -> dict:
|
77 |
+
"""Main parsing function"""
|
78 |
try:
|
|
|
79 |
text = self.extract_text(file_path)
|
80 |
|
81 |
if not text or len(text.strip()) < 10:
|
82 |
+
return {
|
83 |
+
"name": "Error: Empty file",
|
84 |
+
"skills": [],
|
85 |
+
"education": [],
|
86 |
+
"experience": []
|
87 |
+
}
|
88 |
|
89 |
+
name = self.extract_name(text)
|
90 |
+
sections = self.extract_sections(text)
|
91 |
|
92 |
+
return {
|
93 |
+
"name": name,
|
94 |
+
"skills": sections["skills"][:10], # Limit to 10 skills
|
95 |
+
"education": sections["education"][:3], # Limit to 3 items
|
96 |
+
"experience": sections["experience"][:3] # Limit to 3 items
|
|
|
97 |
}
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
|
|
100 |
return {
|
101 |
+
"name": f"Error: {str(e)}",
|
102 |
+
"skills": [],
|
103 |
+
"education": [],
|
104 |
+
"experience": []
|
|
|
|
|
|
|
105 |
}
|
106 |
|
107 |
+
# Global instance
|
108 |
resume_parser = ResumeParser()
|
109 |
|
110 |
+
def parse_resume(file_path: str) -> dict:
|
111 |
+
"""Public interface for resume parsing"""
|
112 |
+
return resume_parser.parse_resume(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|