Spaces:
Paused
Paused
Commit
·
6d286f1
1
Parent(s):
a511250
updated
Browse files
backend/services/resume_parser.py
CHANGED
@@ -1,47 +1,53 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
2 |
-
import
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
# === Extract text from PDF/DOCX ===
|
13 |
def extract_text(file_path: str) -> str:
|
14 |
-
"""Extract text from PDF or DOCX
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
with zipfile.ZipFile(file_path) as zf:
|
23 |
with zf.open("word/document.xml") as docx_xml:
|
24 |
xml_text = docx_xml.read().decode("utf-8", errors="ignore")
|
25 |
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
|
26 |
return re.sub(r"<[^>]+>", " ", xml_text)
|
|
|
27 |
return ""
|
28 |
|
29 |
-
#
|
|
|
|
|
30 |
def parse_resume(file_path: str, filename: str = None) -> dict:
|
31 |
-
"""Parse resume and extract
|
32 |
text = extract_text(file_path)
|
|
|
33 |
entities = ner_pipeline(text)
|
34 |
|
35 |
name, skills, education, experience = [], [], [], []
|
36 |
-
|
37 |
for ent in entities:
|
38 |
-
word = ent["word"].strip()
|
39 |
label = ent["entity_group"].upper()
|
40 |
-
|
41 |
-
# Skip empty or placeholder tokens
|
42 |
-
if not word or word.startswith("LABEL_"):
|
43 |
-
continue
|
44 |
-
|
45 |
if label == "NAME":
|
46 |
name.append(word)
|
47 |
elif label == "SKILL":
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
2 |
+
import zipfile, re, os
|
3 |
|
4 |
+
# ===============================
|
5 |
+
# Load Model & Tokenizer
|
6 |
+
# ===============================
|
7 |
+
MODEL_NAME = "sravya-abburi/ResumeParserBERT" # Change to Kiet/autotrain-resume_parser-1159242747 if needed
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
10 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
11 |
|
12 |
+
# ===============================
|
13 |
+
# Extract Text (PDF & DOCX)
|
14 |
+
# ===============================
|
|
|
15 |
def extract_text(file_path: str) -> str:
|
16 |
+
"""Extract text from PDF or DOCX without external dependencies."""
|
17 |
+
file_path_lower = file_path.lower()
|
18 |
+
|
19 |
+
# PDF reading using PyMuPDF (built into Spaces environment)
|
20 |
+
if file_path_lower.endswith(".pdf"):
|
21 |
+
import fitz # PyMuPDF
|
22 |
+
text = ""
|
23 |
+
with fitz.open(file_path) as pdf_doc:
|
24 |
+
for page in pdf_doc:
|
25 |
+
text += page.get_text()
|
26 |
+
return text
|
27 |
+
|
28 |
+
# DOCX reading by extracting XML content
|
29 |
+
elif file_path_lower.endswith(".docx"):
|
30 |
with zipfile.ZipFile(file_path) as zf:
|
31 |
with zf.open("word/document.xml") as docx_xml:
|
32 |
xml_text = docx_xml.read().decode("utf-8", errors="ignore")
|
33 |
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
|
34 |
return re.sub(r"<[^>]+>", " ", xml_text)
|
35 |
+
|
36 |
return ""
|
37 |
|
38 |
+
# ===============================
|
39 |
+
# Parse Resume
|
40 |
+
# ===============================
|
41 |
def parse_resume(file_path: str, filename: str = None) -> dict:
|
42 |
+
"""Parse resume and extract structured information."""
|
43 |
text = extract_text(file_path)
|
44 |
+
|
45 |
entities = ner_pipeline(text)
|
46 |
|
47 |
name, skills, education, experience = [], [], [], []
|
|
|
48 |
for ent in entities:
|
|
|
49 |
label = ent["entity_group"].upper()
|
50 |
+
word = ent["word"].strip()
|
|
|
|
|
|
|
|
|
51 |
if label == "NAME":
|
52 |
name.append(word)
|
53 |
elif label == "SKILL":
|