Spaces:
Paused
Paused
Commit
·
a511250
1
Parent(s):
864c2ae
updated
Browse files
backend/services/resume_parser.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
2 |
import subprocess, zipfile, re, os
|
3 |
|
4 |
-
# === Load pretrained HF model
|
5 |
-
MODEL_NAME = "sravya-abburi/ResumeParserBERT" # or Kiet/autotrain-resume_parser-1159242747
|
6 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
8 |
-
|
|
|
|
|
9 |
|
10 |
# === Extract text from PDF/DOCX ===
|
11 |
def extract_text(file_path: str) -> str:
|
|
|
12 |
if file_path.lower().endswith(".pdf"):
|
13 |
result = subprocess.run(
|
14 |
["pdftotext", "-layout", file_path, "-"],
|
@@ -24,14 +27,21 @@ def extract_text(file_path: str) -> str:
|
|
24 |
return ""
|
25 |
|
26 |
# === Parse resume with NER ===
|
27 |
-
def parse_resume(file_path: str) -> dict:
|
|
|
28 |
text = extract_text(file_path)
|
29 |
entities = ner_pipeline(text)
|
30 |
|
31 |
name, skills, education, experience = [], [], [], []
|
|
|
32 |
for ent in entities:
|
|
|
33 |
label = ent["entity_group"].upper()
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
if label == "NAME":
|
36 |
name.append(word)
|
37 |
elif label == "SKILL":
|
@@ -42,8 +52,8 @@ def parse_resume(file_path: str) -> dict:
|
|
42 |
experience.append(word)
|
43 |
|
44 |
return {
|
45 |
-
"name": " ".join(
|
46 |
-
"skills": ", ".join(
|
47 |
-
"education": ", ".join(
|
48 |
-
"experience": ", ".join(
|
49 |
}
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
2 |
import subprocess, zipfile, re, os
|
3 |
|
4 |
+
# === Load pretrained HF model ===
|
5 |
+
MODEL_NAME = "sravya-abburi/ResumeParserBERT" # or "Kiet/autotrain-resume_parser-1159242747"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
8 |
+
|
9 |
+
# Use CPU for stability (device=-1) to avoid GPU memory issues from other parts of the app
|
10 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=-1)
|
11 |
|
12 |
# === Extract text from PDF/DOCX ===
|
13 |
def extract_text(file_path: str) -> str:
|
14 |
+
"""Extract text from PDF or DOCX resumes."""
|
15 |
if file_path.lower().endswith(".pdf"):
|
16 |
result = subprocess.run(
|
17 |
["pdftotext", "-layout", file_path, "-"],
|
|
|
27 |
return ""
|
28 |
|
29 |
# === Parse resume with NER ===
|
30 |
+
def parse_resume(file_path: str, filename: str = None) -> dict:
|
31 |
+
"""Parse resume and extract Name, Skills, Education, Experience."""
|
32 |
text = extract_text(file_path)
|
33 |
entities = ner_pipeline(text)
|
34 |
|
35 |
name, skills, education, experience = [], [], [], []
|
36 |
+
|
37 |
for ent in entities:
|
38 |
+
word = ent["word"].strip()
|
39 |
label = ent["entity_group"].upper()
|
40 |
+
|
41 |
+
# Skip empty or placeholder tokens
|
42 |
+
if not word or word.startswith("LABEL_"):
|
43 |
+
continue
|
44 |
+
|
45 |
if label == "NAME":
|
46 |
name.append(word)
|
47 |
elif label == "SKILL":
|
|
|
52 |
experience.append(word)
|
53 |
|
54 |
return {
|
55 |
+
"name": " ".join(dict.fromkeys(name)),
|
56 |
+
"skills": ", ".join(dict.fromkeys(skills)),
|
57 |
+
"education": ", ".join(dict.fromkeys(education)),
|
58 |
+
"experience": ", ".join(dict.fromkeys(experience))
|
59 |
}
|