Spaces:
Paused
Paused
Commit
·
864c2ae
1
Parent(s):
efffc2e
updated
Browse files
backend/services/resume_parser.py
CHANGED
@@ -1,104 +1,49 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
import subprocess
|
5 |
-
import zipfile
|
6 |
-
from typing import List, Dict
|
7 |
-
import torch
|
8 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
model = AutoModelForTokenClassification.from_pretrained(MODEL_ID)
|
17 |
-
|
18 |
-
ner_pipeline = pipeline(
|
19 |
-
"ner",
|
20 |
-
model=model,
|
21 |
-
tokenizer=tokenizer,
|
22 |
-
aggregation_strategy="simple",
|
23 |
-
device=0 if torch.cuda.is_available() else -1
|
24 |
-
)
|
25 |
-
|
26 |
-
# ===============================
|
27 |
-
# Text Extraction
|
28 |
-
# ===============================
|
29 |
def extract_text(file_path: str) -> str:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
with zf.open("word/document.xml") as docx_xml:
|
48 |
-
xml_bytes = docx_xml.read()
|
49 |
-
xml_text = xml_bytes.decode("utf-8", errors="ignore")
|
50 |
-
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
|
51 |
-
text = re.sub(r"<[^>]+>", " ", xml_text)
|
52 |
-
return re.sub(r"\s+", " ", text)
|
53 |
-
else:
|
54 |
-
return ""
|
55 |
-
except Exception:
|
56 |
-
return ""
|
57 |
-
|
58 |
-
# ===============================
|
59 |
-
# Parse Resume using BERT NER
|
60 |
-
# ===============================
|
61 |
-
def parse_with_bert(text: str) -> Dict[str, str]:
|
62 |
-
"""Parse resume text into structured fields using BERT NER."""
|
63 |
entities = ner_pipeline(text)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
for ent in entities:
|
68 |
label = ent["entity_group"].upper()
|
69 |
-
word = ent["word"]
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
exp_tokens.append(word)
|
79 |
|
80 |
return {
|
81 |
-
"name": " ".join(
|
82 |
-
"skills": ", ".join(
|
83 |
-
"education": ", ".join(
|
84 |
-
"experience": ", ".join(
|
85 |
}
|
86 |
-
|
87 |
-
# ===============================
|
88 |
-
# Main Parse Function
|
89 |
-
# ===============================
|
90 |
-
def parse_resume(file_path: str, filename: str) -> dict:
|
91 |
-
"""Main function for resume parsing."""
|
92 |
-
text = extract_text(file_path)
|
93 |
-
if not text:
|
94 |
-
return {"name": "", "skills": "", "education": "", "experience": ""}
|
95 |
-
|
96 |
-
ents = parse_with_bert(text)
|
97 |
-
|
98 |
-
# Fallback: use filename for name if model doesn't find one
|
99 |
-
if not ents["name"]:
|
100 |
-
base = os.path.basename(filename)
|
101 |
-
base = re.sub(r"\.(pdf|docx|doc)$", "", base, flags=re.I)
|
102 |
-
ents["name"] = re.sub(r"[\._-]+", " ", base).title().strip()
|
103 |
-
|
104 |
-
return ents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
2 |
+
import subprocess, zipfile, re, os
|
3 |
|
4 |
+
# === Load pretrained HF model instead of training ===
|
5 |
+
MODEL_NAME = "sravya-abburi/ResumeParserBERT" # or Kiet/autotrain-resume_parser-1159242747
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
+
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
8 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
9 |
|
10 |
+
# === Extract text from PDF/DOCX ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def extract_text(file_path: str) -> str:
|
12 |
+
if file_path.lower().endswith(".pdf"):
|
13 |
+
result = subprocess.run(
|
14 |
+
["pdftotext", "-layout", file_path, "-"],
|
15 |
+
stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False
|
16 |
+
)
|
17 |
+
return result.stdout.decode("utf-8", errors="ignore")
|
18 |
+
elif file_path.lower().endswith(".docx"):
|
19 |
+
with zipfile.ZipFile(file_path) as zf:
|
20 |
+
with zf.open("word/document.xml") as docx_xml:
|
21 |
+
xml_text = docx_xml.read().decode("utf-8", errors="ignore")
|
22 |
+
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
|
23 |
+
return re.sub(r"<[^>]+>", " ", xml_text)
|
24 |
+
return ""
|
25 |
+
|
26 |
+
# === Parse resume with NER ===
|
27 |
+
def parse_resume(file_path: str) -> dict:
|
28 |
+
text = extract_text(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
entities = ner_pipeline(text)
|
30 |
|
31 |
+
name, skills, education, experience = [], [], [], []
|
|
|
32 |
for ent in entities:
|
33 |
label = ent["entity_group"].upper()
|
34 |
+
word = ent["word"]
|
35 |
+
if label == "NAME":
|
36 |
+
name.append(word)
|
37 |
+
elif label == "SKILL":
|
38 |
+
skills.append(word)
|
39 |
+
elif label in ["EDUCATION", "DEGREE"]:
|
40 |
+
education.append(word)
|
41 |
+
elif label in ["EXPERIENCE", "JOB", "ROLE"]:
|
42 |
+
experience.append(word)
|
|
|
43 |
|
44 |
return {
|
45 |
+
"name": " ".join(set(name)),
|
46 |
+
"skills": ", ".join(set(skills)),
|
47 |
+
"education": ", ".join(set(education)),
|
48 |
+
"experience": ", ".join(set(experience))
|
49 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|