iamsuman commited on
Commit
07cb5be
·
1 Parent(s): 8909510

added gif file to lfs

Browse files
pages/05_California_wildfire.py CHANGED
@@ -126,6 +126,12 @@ class Map(geemap.Map):
126
  self.addLayer(worldPop2001, pop_params2, "Impacted Population Overlay 2001", False)
127
 
128
 
 
 
 
 
 
 
129
 
130
  # time.sleep(20)
131
  # add_legend_after_overlay(self)
@@ -136,24 +142,36 @@ def Page():
136
  markdown = """
137
  ## California Wildfire Analysis
138
 
139
- ### Population Density and wildfire burn area
140
 
141
  **For this analysis we will be using [WorldPop Global Project Population Data: Estimated Residential Population per 100x100m Grid Square dataset](https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop#bands) for population, [MCD64A1.061 MODIS Burned Area Monthly Global 500m](https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1) dataset for burn scars,
142
  [TIGER: US Census States 2018](https://developers.google.com/earth-engine/datasets/catalog/TIGER_2018_States) for state geometry, [DMSP OLS: Nighttime Lights Time Series Version 4](https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS) and [USGS/NLCD](https://www.usgs.gov/centers/eros/science/national-land-cover-database) for land cover with geemap. First, we will compute the zonal statistics to identify the countries with the largest forest area, and then plot them. Here the base tree cover imagery is taken from 2000**
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  #### Population and Wildfire Color Coding
144
  - **No population**: `#000000` ![#000000](https://via.placeholder.com/15/000000/000000?text=+)
145
  - **Low population**: `#6baed6` ![#6baed6](https://via.placeholder.com/15/6baed6/000000?text=+)
146
  - **High population**: `#2171b5` ![#2171b5](https://via.placeholder.com/15/2171b5/000000?text=+)
147
  - **Area with population affected by wildfires**: `#ffffff` ![#ffffff](https://via.placeholder.com/15/ffffff/000000?text=+)
148
  - **Burn areas**: `#ff0000` ![#ff0000](https://via.placeholder.com/15/ff0000/000000?text=+)
149
-
150
  """
151
  solara.Markdown(markdown)
152
 
153
  with solara.Column(style={"min-width": "500px"}):
154
  Map.element(
155
- center=[40, -100],
156
- zoom=4,
157
  height="600px",
158
  )
159
 
 
126
  self.addLayer(worldPop2001, pop_params2, "Impacted Population Overlay 2001", False)
127
 
128
 
129
+ # self.centerObject(roi, 10)
130
+ # self.addLayer(roi, {}, 'ROI')
131
+ # try:
132
+ # self.add_legend(legend_title="Population and Burn Scars", legend_elements=legend_dict)
133
+ # except Exception as e:
134
+ # print(f"Error adding legend: {e}")
135
 
136
  # time.sleep(20)
137
  # add_legend_after_overlay(self)
 
142
  markdown = """
143
  ## California Wildfire Analysis
144
 
145
+ ### Estimated California Population Directly Affected by wildfire (2000 to 2020)
146
 
147
  **For this analysis we will be using [WorldPop Global Project Population Data: Estimated Residential Population per 100x100m Grid Square dataset](https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop#bands) for population, [MCD64A1.061 MODIS Burned Area Monthly Global 500m](https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1) dataset for burn scars,
148
  [TIGER: US Census States 2018](https://developers.google.com/earth-engine/datasets/catalog/TIGER_2018_States) for state geometry, [DMSP OLS: Nighttime Lights Time Series Version 4](https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS) and [USGS/NLCD](https://www.usgs.gov/centers/eros/science/national-land-cover-database) for land cover with geemap. First, we will compute the zonal statistics to identify the countries with the largest forest area, and then plot them. Here the base tree cover imagery is taken from 2000**
149
+ """
150
+ solara.Markdown(markdown)
151
+
152
+ with solara.Column(align="center",style={"min-width": "500px"}):
153
+ forest_barchart_image_url = "/static/public/wildfire_population.png"
154
+ solara.Image(forest_barchart_image_url)
155
+
156
+ with solara.Column(align="center"):
157
+ markdown = """
158
+
159
+ ### Population Density and wildfire burn area
160
+
161
+ **Let's visualize the popluation with wildfire burn area**
162
  #### Population and Wildfire Color Coding
163
  - **No population**: `#000000` ![#000000](https://via.placeholder.com/15/000000/000000?text=+)
164
  - **Low population**: `#6baed6` ![#6baed6](https://via.placeholder.com/15/6baed6/000000?text=+)
165
  - **High population**: `#2171b5` ![#2171b5](https://via.placeholder.com/15/2171b5/000000?text=+)
166
  - **Area with population affected by wildfires**: `#ffffff` ![#ffffff](https://via.placeholder.com/15/ffffff/000000?text=+)
167
  - **Burn areas**: `#ff0000` ![#ff0000](https://via.placeholder.com/15/ff0000/000000?text=+)
 
168
  """
169
  solara.Markdown(markdown)
170
 
171
  with solara.Column(style={"min-width": "500px"}):
172
  Map.element(
173
+ center=[35, -120],
174
+ zoom=4.5,
175
  height="600px",
176
  )
177
 
public/wildfire_population.png ADDED