arjunanand13 commited on
Commit
b6e8cf7
·
verified ·
1 Parent(s): a9f989b

Delete app_22_5_24.py

Browse files
Files changed (1) hide show
  1. app_22_5_24.py +0 -188
app_22_5_24.py DELETED
@@ -1,188 +0,0 @@
1
- import gradio as gr
2
- import transformers
3
- from transformers import AutoTokenizer, AutoModelForCausalLM
4
- import accelerate
5
- import einops
6
- import langchain
7
- import xformers
8
- import os
9
- import bitsandbytes
10
- import sentence_transformers
11
- import huggingface_hub
12
- import torch
13
- from torch import cuda, bfloat16
14
- from transformers import StoppingCriteria, StoppingCriteriaList
15
- from langchain.llms import HuggingFacePipeline
16
- from langchain.document_loaders import TextLoader, DirectoryLoader
17
- from langchain.text_splitter import RecursiveCharacterTextSplitter
18
- from langchain.embeddings import HuggingFaceEmbeddings
19
- from langchain.vectorstores import FAISS
20
- from langchain.chains import ConversationalRetrievalChain
21
- from huggingface_hub import InferenceClient
22
-
23
- # Login to Hugging Face using a token
24
- # huggingface_hub.login(HF_TOKEN)
25
-
26
-
27
- """CPU"""
28
-
29
- # model_config = transformers.AutoConfig.from_pretrained(
30
- # model_id,
31
- # token=HF_TOKEN,
32
- # # use_auth_token=hf_auth
33
- # )
34
- # model = transformers.AutoModelForCausalLM.from_pretrained(
35
- # model_id,
36
- # trust_remote_code=True,
37
- # config=model_config,
38
- # # quantization_config=bnb_config,
39
- # token=HF_TOKEN,
40
- # # use_auth_token=hf_auth
41
- # )
42
- # model.eval()
43
- # tokenizer = transformers.AutoTokenizer.from_pretrained(
44
- # model_id,
45
- # token=HF_TOKEN,
46
- # # use_auth_token=hf_auth
47
- # )
48
- # generate_text = transformers.pipeline(
49
- # model=self.model, tokenizer=self.tokenizer,
50
- # return_full_text=True,
51
- # task='text-generation',
52
- # temperature=0.01,
53
- # max_new_tokens=512
54
- # )
55
-
56
-
57
-
58
- # define custom stopping criteria object
59
- class StopOnTokens(StoppingCriteria):
60
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
61
- for stop_ids in stop_token_ids:
62
- if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
63
- return True
64
- return False
65
-
66
- stopping_criteria = StoppingCriteriaList([StopOnTokens()])
67
-
68
-
69
-
70
- loader = DirectoryLoader('data2/text/range/0-5000', loader_cls=TextLoader)
71
- documents = loader.load()
72
- print('len of documents are',len(documents))
73
-
74
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
75
- all_splits = text_splitter.split_documents(documents)
76
-
77
- length_of_all_splits = len(all_splits)
78
- print("Length of all_splits:", length_of_all_splits)
79
-
80
- print (all_splits[0])
81
- print("#######################################")
82
- print (all_splits[1])
83
- print("#######################################")
84
- print (all_splits[2])
85
- print("#######################################")
86
- print (all_splits[3])
87
- print("#######################################")
88
- print (all_splits[4])
89
-
90
- """
91
- Loading of the LLama3 model
92
- """
93
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
94
- model_id = 'meta-llama/Meta-Llama-3-8B'
95
- device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
96
-
97
-
98
- """set quantization configuration to load large model with less GPU memory
99
- this requires the `bitsandbytes` library"""
100
- bnb_config = transformers.BitsAndBytesConfig(
101
- load_in_4bit=True,
102
- bnb_4bit_quant_type='nf4',
103
- bnb_4bit_use_double_quant=True,
104
- bnb_4bit_compute_dtype=bfloat16
105
- )
106
-
107
- tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct",token=HF_TOKEN)
108
- model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto",token=HF_TOKEN,quantization_config=bnb_config) # to("cuda:0")
109
- terminators = [
110
- tokenizer.eos_token_id,
111
- tokenizer.convert_tokens_to_ids("<|eot_id|>")
112
- ]
113
-
114
- """
115
- Setting up the stop list to define stopping criteria.
116
- """
117
-
118
- stop_list = ['\nHuman:', '\n```\n']
119
-
120
- stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
121
- stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
122
-
123
- generate_text = transformers.pipeline(
124
- model=model,
125
- tokenizer=tokenizer,
126
- return_full_text=True, # langchain expects the full text
127
- task='text-generation',
128
- # we pass model parameters here too
129
- stopping_criteria=stopping_criteria, # without this model rambles during chat
130
- temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
131
- max_new_tokens=512, # max number of tokens to generate in the output
132
- repetition_penalty=1.1 # without this output begins repeating
133
- )
134
-
135
- llm = HuggingFacePipeline(pipeline=generate_text)
136
-
137
-
138
- model_name = "sentence-transformers/all-mpnet-base-v2"
139
- model_kwargs = {"device": "cuda"}
140
-
141
- embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
142
-
143
- # storing embeddings in the vector store
144
- vectorstore = FAISS.from_documents(all_splits, embeddings)
145
-
146
- chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
147
-
148
- chat_history = []
149
-
150
- def format_prompt(query):
151
- # Construct a clear and structured prompt to guide the LLM's response
152
- prompt = f"""
153
- You are a knowledgeable assistant with access to a comprehensive database.
154
- I need you to answer my question and provide related information in a specific format.
155
- Here's what I need:
156
- 1. A brief, general response to my question based on related answers retrieved.
157
- 2. A JSON-formatted output containing:
158
- - "question": The original question.
159
- - "answer": The detailed answer.
160
- - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
161
- - "question": The related question.
162
- - "answer": The related answer.
163
- Here's my question:
164
- {query}
165
- Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
166
- """
167
- return prompt
168
-
169
-
170
- def qa_infer(query):
171
- formatted_prompt = format_prompt(query)
172
- result = chain({"question": formatted_prompt, "chat_history": chat_history})
173
- return result['answer']
174
-
175
- # query = "What` is the best TS pin configuration for BQ24040 in normal battery charge mode"
176
- # qa_infer(query)
177
-
178
- EXAMPLES = [" How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
179
- "Can BQ25896 support I2C interface?",
180
- "Does TDA2 vout support bt656 8-bit mode?"]
181
-
182
- demo = gr.Interface(fn=qa_infer, inputs="text",allow_flagging='never', examples=EXAMPLES,
183
- cache_examples=False,outputs="text")
184
-
185
- # launch the app!
186
- #demo.launch(enable_queue = True,share=True)
187
- #demo.queue(default_enabled=True).launch(debug=True,share=True)
188
- demo.launch()