analyzerV1 / app.py
iimran's picture
Create app.py
d7c6538 verified
raw
history blame
1.47 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os
# Get Hugging Face token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("Please set HF_TOKEN environment variable with your Hugging Face access token")
# Load model and tokenizer
model_name = "iimran/AnalyserV1"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained(model_name, token=HF_TOKEN)
def classify_complaint(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
with torch.no_grad():
outputs = model(**inputs)
return model.config.id2label[torch.argmax(outputs.logits).item()]
# Create Gradio interface
demo = gr.Interface(
fn=classify_complaint,
inputs=gr.Textbox(lines=3, placeholder="Enter your complaint here...", label="Complaint Text"),
outputs=gr.Label(label="Predicted Category"),
title="Complaint Category Classifier",
description="Automatically classify community complaints into specific categories",
examples=[
["I wanted to bring to your attention that a huge big truck has been parked on Main Street"],
["There are overgrown bushes on Oak Road that pose a fire risk"],
["Excessive noise from construction site during night hours"]
]
)
if __name__ == "__main__":
demo.launch()