|
import streamlit as st |
|
import time |
|
import requests |
|
from streamlit.components.v1 import html |
|
import os |
|
|
|
@st.cache_resource |
|
def get_help_agent(): |
|
from transformers import pipeline |
|
return pipeline("conversational", model="facebook/blenderbot-400M-distill") |
|
|
|
def inject_custom_css(): |
|
st.markdown(""" |
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap'); |
|
* { font-family: 'Poppins', sans-serif; } |
|
.title { font-size: 3rem !important; font-weight: 700 !important; color: #6C63FF !important; text-align: center; margin-bottom: 0.5rem; } |
|
.subtitle { font-size: 1.2rem !important; text-align: center; color: #666 !important; margin-bottom: 2rem; } |
|
.question-box { background: #F8F9FA; border-radius: 15px; padding: 2rem; margin: 1.5rem 0; box-shadow: 0 4px 6px rgba(0,0,0,0.1); color: black !important; } |
|
.answer-btn { border-radius: 12px !important; padding: 0.5rem 1.5rem !important; font-weight: 600 !important; margin: 0.5rem !important; } |
|
.yes-btn { background: #6C63FF !important; color: white !important; } |
|
.no-btn { background: #FF6B6B !important; color: white !important; } |
|
.final-reveal { animation: fadeIn 2s; font-size: 2.5rem; color: #6C63FF; text-align: center; margin: 2rem 0; } |
|
@keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } } |
|
.confetti { position: fixed; top: 0; left: 0; width: 100%; height: 100%; pointer-events: none; z-index: 1000; } |
|
.confidence-meter { height: 10px; background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%); border-radius: 5px; margin: 10px 0; } |
|
.mic-btn { margin-top: 29px; border: none; background: none; cursor: pointer; font-size: 1.5em; padding: 0; } |
|
</style> |
|
<script> |
|
function startSpeechRecognition(inputId) { |
|
const recognition = new (window.SpeechRecognition || window.webkitSpeechRecognition)(); |
|
recognition.lang = 'en-US'; |
|
recognition.interimResults = false; |
|
recognition.maxAlternatives = 1; |
|
recognition.onresult = function(event) { |
|
const transcript = event.results[0][0].transcript.toLowerCase(); |
|
const inputElement = document.getElementById(inputId); |
|
if (inputElement) { |
|
inputElement.value = transcript; |
|
const event = new Event('input', { bubbles: true }); |
|
inputElement.dispatchEvent(event); |
|
} |
|
}; |
|
recognition.onerror = function(event) { |
|
console.error('Speech recognition error', event.error); |
|
}; |
|
recognition.start(); |
|
} |
|
</script> |
|
""", unsafe_allow_html=True) |
|
|
|
def show_confetti(): |
|
html(""" |
|
<canvas id="confetti-canvas" class="confetti"></canvas> |
|
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script> |
|
<script> |
|
const canvas = document.getElementById('confetti-canvas'); |
|
const confetti = confetti.create(canvas, { resize: true }); |
|
confetti({ particleCount: 150, spread: 70, origin: { y: 0.6 } }); |
|
setTimeout(() => { canvas.remove(); }, 5000); |
|
</script> |
|
""") |
|
|
|
def ask_llama(conversation_history, category, is_final_guess=False): |
|
api_url = "https://api.groq.com/openai/v1/chat/completions" |
|
headers = { |
|
"Authorization": "Bearer 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", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules: |
|
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities |
|
2. Consider all previous answers carefully before asking next question |
|
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]" |
|
4. For places: ask about continent, climate, famous landmarks, country, city or population |
|
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame |
|
6. For objects: ask about size, color, usage, material, or where it's found |
|
7. Never repeat questions and always make progress toward guessing""" |
|
|
|
if is_final_guess: |
|
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text: |
|
{conversation_history}""" |
|
else: |
|
prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities." |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
*conversation_history, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
data = { |
|
"model": "llama-3.3-70b-versatile", |
|
"messages": messages, |
|
"temperature": 0.7 if is_final_guess else 0.8, |
|
"max_tokens": 100 |
|
} |
|
|
|
try: |
|
response = requests.post(api_url, headers=headers, json=data) |
|
response.raise_for_status() |
|
return response.json()["choices"][0]["message"]["content"] |
|
except Exception as e: |
|
st.error(f"Error calling Llama API: {str(e)}") |
|
return "Could not generate question" |
|
|
|
def ask_help_agent(query): |
|
try: |
|
from huggingface_hub import InferenceClient |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=os.environ.get("HF_HUB_TOKEN")) |
|
system_message = "You are a friendly Chatbot." |
|
history = [] |
|
if "help_conversation" in st.session_state: |
|
for msg in st.session_state.help_conversation: |
|
history.append((msg.get("query", ""), msg.get("response", ""))) |
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, bot_msg in history: |
|
if user_msg: messages.append({"role": "user", "content": user_msg}) |
|
if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) |
|
messages.append({"role": "user", "content": query}) |
|
response_text = "" |
|
for message in client.chat_completion(messages, max_tokens=150, stream=True, temperature=0.7, top_p=0.95): |
|
token = message.choices[0].delta.content |
|
response_text += token |
|
return response_text |
|
except Exception as e: |
|
return f"Error in help agent: {str(e)}" |
|
|
|
def main(): |
|
inject_custom_css() |
|
|
|
st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True) |
|
st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True) |
|
|
|
if 'game_state' not in st.session_state: |
|
st.session_state.game_state = "start" |
|
st.session_state.questions = [] |
|
st.session_state.current_q = 0 |
|
st.session_state.answers = [] |
|
st.session_state.conversation_history = [] |
|
st.session_state.category = None |
|
st.session_state.final_guess = None |
|
st.session_state.help_conversation = [] |
|
|
|
if st.session_state.game_state == "start": |
|
st.markdown(""" |
|
<div class="question-box"> |
|
<h3>Welcome to <span style='color:#6C63FF;'>KASOTI 🎯</span></h3> |
|
<p>Think of something and I'll try to guess it in 20 questions or less!</p> |
|
<p>Choose a category:</p> |
|
<ul> |
|
<li><strong>Person</strong> - celebrity, fictional character, historical figure</li> |
|
<li><strong>Place</strong> - city, country, landmark, geographical location</li> |
|
<li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li> |
|
</ul> |
|
<p>Type or speak your category below to begin:</p> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
with st.form("start_form"): |
|
col1, col2 = st.columns([4, 1]) |
|
with col1: |
|
category_input = st.text_input("Enter category (person/place/object):", key="category_input").strip().lower() |
|
with col2: |
|
st.markdown(""" |
|
<button type="button" onclick="startSpeechRecognition('text_input-category_input')" class="mic-btn">🎤</button> |
|
""", unsafe_allow_html=True) |
|
if st.form_submit_button("Start Game"): |
|
if not category_input: |
|
st.error("Please enter a category!") |
|
elif category_input not in ["person", "place", "object"]: |
|
st.error("Please enter either 'person', 'place', or 'object'!") |
|
else: |
|
st.session_state.category = category_input |
|
first_question = ask_llama([], category_input) |
|
st.session_state.questions = [first_question] |
|
st.session_state.conversation_history = [{"role": "assistant", "content": first_question}] |
|
st.session_state.game_state = "playing" |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|