File size: 4,979 Bytes
f7d29a6
 
 
 
10a9825
f7d29a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b711917
f7d29a6
 
b711917
 
 
f7d29a6
 
 
 
 
 
 
 
 
 
 
 
 
 
a33aed1
 
 
 
f7d29a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import pandas as pd
import faiss
import numpy as np
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from groq import Groq
import os

# --------------------------
# Configuration & Styling
# --------------------------
st.set_page_config(
    page_title="CineMaster AI - Movie Expert",
    page_icon="🎬",
    layout="wide",
    initial_sidebar_state="expanded"
)

st.markdown("""
<style>
    :root {
        --primary: #7017ff;
        --secondary: #ff2d55;
    }
    .header {
        background: linear-gradient(135deg, var(--primary), var(--secondary));
        color: white;
        padding: 2rem;
        border-radius: 15px;
        text-align: center;
        box-shadow: 0 4px 6px rgba(0,0,0,0.1);
    }
    .response-box {
        background: rgba(255,255,255,0.1);
        border-radius: 10px;
        padding: 1.5rem;
        margin: 1rem 0;
        border: 1px solid rgba(255,255,255,0.2);
    }
    .stButton>button {
        background: linear-gradient(45deg, var(--primary), var(--secondary)) !important;
        color: white !important;
        border-radius: 25px;
        padding: 0.8rem 2rem;
        font-weight: 600;
        transition: transform 0.2s;
    }
    .stButton>button:hover {
        transform: scale(1.05);
    }
</style>
""", unsafe_allow_html=True)

# --------------------------
# Movie Dataset & Embeddings
# --------------------------
# Replace load_movie_data() with:
@st.cache_resource
def load_movie_data():
    dataset = load_dataset("wiki_movies", split="train")
    df = pd.DataFrame(dataset)
    df['context'] = df.apply(lambda x: f"Title: {x['title']}\nPlot: {x['plot']}\nCast: {x['cast']}", axis=1)
    return df

@st.cache_resource
def setup_retrieval(df):
    embedder = SentenceTransformer('all-MiniLM-L6-v2')
    embeddings = embedder.encode(df['context'].tolist())
    
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(embeddings)
    return embedder, index

# --------------------------
# Groq API Setup
# --------------------------
def get_groq_client():
    return Groq(
        api_key=os.getenv("GROQ_API_KEY", "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")
    )

def movie_expert(query, context):
    prompt = f"""You are a film expert. Answer using this context:
    
    {context}
    
    Question: {query}
    
    Format response with:
    1. πŸŽ₯ Direct Answer
    2. πŸ“– Detailed Explanation
    3. πŸ† Key Cast Members
    4. 🌟 Trivia (if available)
    """
    
    response = client.chat.completions.create(
        messages=[{"role": "user", "content": prompt}],
        model="llama3-70b-8192",
        temperature=0.3
    )
    return response.choices[0].message.content

# --------------------------
# Main Application
# --------------------------
def main():
    df = load_movie_data()
    embedder, index = setup_retrieval(df)
    
    # Header Section
    st.markdown("""
    <div class="header">
        <h1>🎞️ CineMaster AI</h1>
        <h3>Your Personal Movie Encyclopedia</h3>
    </div>
    """, unsafe_allow_html=True)
    
    # Sidebar
    with st.sidebar:
        st.image("https://cdn-icons-png.flaticon.com/512/2598/2598702.png", width=120)
        st.subheader("Sample Questions")
        examples = [
            "Who played the Joker in The Dark Knight?",
            "What's the plot of Inception?",
            "List Christopher Nolan's movies",
            "Who directed The Dark Knight?",
            "What year was Inception released?"
        ]
        for ex in examples:
            st.code(ex, language="bash")
    
    # Main Interface
    query = st.text_input("🎯 Ask any movie question:", 
                        placeholder="e.g., 'Who played the villain in The Dark Knight?'")
    
    if st.button("πŸš€ Get Answer"):
        if query:
            with st.spinner("πŸ” Searching through 10,000+ movie records..."):
                query_embed = embedder.encode([query])
                _, indices = index.search(query_embed, 2)
                contexts = [df.iloc[i]['context'] for i in indices[0]]
                combined_context = "\n\n".join(contexts)
                
            with st.spinner("πŸŽ₯ Generating cinematic insights..."):
                answer = movie_expert(query, combined_context)
                
            st.markdown("---")
            with st.container():
                st.markdown("## 🎬 Expert Analysis")
                st.markdown(f'<div class="response-box">{answer}</div>', unsafe_allow_html=True)
                
                st.markdown("## πŸ“š Source Materials")
                cols = st.columns(2)
                for i, ctx in enumerate(contexts):
                    with cols[i]:
                        with st.expander(f"Source {i+1}", expanded=True):
                            st.write(ctx)
        else:
            st.warning("Please enter a movie-related question")

if __name__ == "__main__":
    main()