Spaces:
Sleeping
Sleeping
File size: 4,979 Bytes
f7d29a6 10a9825 f7d29a6 b711917 f7d29a6 b711917 f7d29a6 a33aed1 f7d29a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import streamlit as st
import pandas as pd
import faiss
import numpy as np
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from groq import Groq
import os
# --------------------------
# Configuration & Styling
# --------------------------
st.set_page_config(
page_title="CineMaster AI - Movie Expert",
page_icon="π¬",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
:root {
--primary: #7017ff;
--secondary: #ff2d55;
}
.header {
background: linear-gradient(135deg, var(--primary), var(--secondary));
color: white;
padding: 2rem;
border-radius: 15px;
text-align: center;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.response-box {
background: rgba(255,255,255,0.1);
border-radius: 10px;
padding: 1.5rem;
margin: 1rem 0;
border: 1px solid rgba(255,255,255,0.2);
}
.stButton>button {
background: linear-gradient(45deg, var(--primary), var(--secondary)) !important;
color: white !important;
border-radius: 25px;
padding: 0.8rem 2rem;
font-weight: 600;
transition: transform 0.2s;
}
.stButton>button:hover {
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
# --------------------------
# Movie Dataset & Embeddings
# --------------------------
# Replace load_movie_data() with:
@st.cache_resource
def load_movie_data():
dataset = load_dataset("wiki_movies", split="train")
df = pd.DataFrame(dataset)
df['context'] = df.apply(lambda x: f"Title: {x['title']}\nPlot: {x['plot']}\nCast: {x['cast']}", axis=1)
return df
@st.cache_resource
def setup_retrieval(df):
embedder = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = embedder.encode(df['context'].tolist())
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
return embedder, index
# --------------------------
# Groq API Setup
# --------------------------
def get_groq_client():
return Groq(
api_key=os.getenv("GROQ_API_KEY", "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")
)
def movie_expert(query, context):
prompt = f"""You are a film expert. Answer using this context:
{context}
Question: {query}
Format response with:
1. π₯ Direct Answer
2. π Detailed Explanation
3. π Key Cast Members
4. π Trivia (if available)
"""
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-70b-8192",
temperature=0.3
)
return response.choices[0].message.content
# --------------------------
# Main Application
# --------------------------
def main():
df = load_movie_data()
embedder, index = setup_retrieval(df)
# Header Section
st.markdown("""
<div class="header">
<h1>ποΈ CineMaster AI</h1>
<h3>Your Personal Movie Encyclopedia</h3>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.image("https://cdn-icons-png.flaticon.com/512/2598/2598702.png", width=120)
st.subheader("Sample Questions")
examples = [
"Who played the Joker in The Dark Knight?",
"What's the plot of Inception?",
"List Christopher Nolan's movies",
"Who directed The Dark Knight?",
"What year was Inception released?"
]
for ex in examples:
st.code(ex, language="bash")
# Main Interface
query = st.text_input("π― Ask any movie question:",
placeholder="e.g., 'Who played the villain in The Dark Knight?'")
if st.button("π Get Answer"):
if query:
with st.spinner("π Searching through 10,000+ movie records..."):
query_embed = embedder.encode([query])
_, indices = index.search(query_embed, 2)
contexts = [df.iloc[i]['context'] for i in indices[0]]
combined_context = "\n\n".join(contexts)
with st.spinner("π₯ Generating cinematic insights..."):
answer = movie_expert(query, combined_context)
st.markdown("---")
with st.container():
st.markdown("## π¬ Expert Analysis")
st.markdown(f'<div class="response-box">{answer}</div>', unsafe_allow_html=True)
st.markdown("## π Source Materials")
cols = st.columns(2)
for i, ctx in enumerate(contexts):
with cols[i]:
with st.expander(f"Source {i+1}", expanded=True):
st.write(ctx)
else:
st.warning("Please enter a movie-related question")
if __name__ == "__main__":
main() |