imseldrith's picture
Update app.py
15e0d87
from flask import Flask, request, render_template
import nltk
import requests
from bs4 import BeautifulSoup
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
app = Flask(__name__)
@app.route("/", methods=["GET", "POST"])
def home():
if request.method == "POST":
url = request.form["url"]
html = requests.get(url).content
soup = BeautifulSoup(html, "html.parser")
text = soup.get_text()
# Use nltk to perform NLP analysis on the text
tokens = nltk.word_tokenize(text)
tagged = nltk.pos_tag(tokens)
# Check for the presence of certain POS tags to determine content quality
content_quality = "High Quality"
for word, pos in tagged:
if pos in ["CC", "DT", "IN", "MD", "PRP", "PRP$", "TO"]:
content_quality = "Low Quality"
break
return render_template("result.html", quality=content_quality)
return render_template("home.html")
if __name__ == "__main__":
app.run(host="0.0.0.0",port=7860,debug=True)