Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -50,7 +50,8 @@ def generate_heatmap_image(model_entry):
|
|
50 |
# Create a mask for the upper triangle (keeping the diagonal visible).
|
51 |
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
52 |
|
53 |
-
|
|
|
54 |
sns.heatmap(matrix,
|
55 |
mask=mask,
|
56 |
annot=True,
|
@@ -66,11 +67,18 @@ def generate_heatmap_image(model_entry):
|
|
66 |
|
67 |
# Save the plot to a bytes buffer.
|
68 |
buf = BytesIO()
|
69 |
-
plt.savefig(buf, format="png")
|
70 |
plt.close()
|
71 |
buf.seek(0)
|
|
|
72 |
# Convert the buffer into a PIL Image.
|
73 |
image = Image.open(buf).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
return image
|
75 |
|
76 |
def generate_heatmaps(selected_model_names):
|
@@ -88,7 +96,13 @@ def generate_heatmaps(selected_model_names):
|
|
88 |
# -------------------------------
|
89 |
# 3. Build the Gradio Interface
|
90 |
# -------------------------------
|
91 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
gr.Markdown("## 3C3H Heatmap Generator")
|
93 |
gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
94 |
|
@@ -96,10 +110,123 @@ with gr.Blocks() as demo:
|
|
96 |
model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=MODEL_NAMES[:3])
|
97 |
|
98 |
generate_btn = gr.Button("Generate Heatmaps")
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
103 |
|
104 |
# Launch the Gradio app
|
105 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Create a mask for the upper triangle (keeping the diagonal visible).
|
51 |
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
52 |
|
53 |
+
# Set a consistent figure size that will work well in the gallery
|
54 |
+
plt.figure(figsize=(6, 5), dpi=100)
|
55 |
sns.heatmap(matrix,
|
56 |
mask=mask,
|
57 |
annot=True,
|
|
|
67 |
|
68 |
# Save the plot to a bytes buffer.
|
69 |
buf = BytesIO()
|
70 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
71 |
plt.close()
|
72 |
buf.seek(0)
|
73 |
+
|
74 |
# Convert the buffer into a PIL Image.
|
75 |
image = Image.open(buf).convert("RGB")
|
76 |
+
|
77 |
+
# Resize the image to a reasonable fixed size for the gallery
|
78 |
+
# This helps maintain consistency and prevent oversized images
|
79 |
+
max_size = (800, 600)
|
80 |
+
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
81 |
+
|
82 |
return image
|
83 |
|
84 |
def generate_heatmaps(selected_model_names):
|
|
|
96 |
# -------------------------------
|
97 |
# 3. Build the Gradio Interface
|
98 |
# -------------------------------
|
99 |
+
with gr.Blocks(css="""
|
100 |
+
.gallery-item img {
|
101 |
+
max-width: 100% !important;
|
102 |
+
max-height: 100% !important;
|
103 |
+
object-fit: contain !important;
|
104 |
+
}
|
105 |
+
""") as demo:
|
106 |
gr.Markdown("## 3C3H Heatmap Generator")
|
107 |
gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
108 |
|
|
|
110 |
model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=MODEL_NAMES[:3])
|
111 |
|
112 |
generate_btn = gr.Button("Generate Heatmaps")
|
113 |
+
|
114 |
+
# Set height and columns for better display
|
115 |
+
gallery = gr.Gallery(
|
116 |
+
label="Heatmaps",
|
117 |
+
columns=2,
|
118 |
+
height="auto",
|
119 |
+
object_fit="contain"
|
120 |
+
)
|
121 |
|
122 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
123 |
|
124 |
# Launch the Gradio app
|
125 |
demo.launch()
|
126 |
+
|
127 |
+
|
128 |
+
# import gradio as gr
|
129 |
+
# import json
|
130 |
+
# import os
|
131 |
+
# import numpy as np
|
132 |
+
# import matplotlib.pyplot as plt
|
133 |
+
# import seaborn as sns
|
134 |
+
# from io import BytesIO
|
135 |
+
# from PIL import Image
|
136 |
+
|
137 |
+
# # -------------------------------
|
138 |
+
# # 1. Load Results from Local File
|
139 |
+
# # -------------------------------
|
140 |
+
# def load_results():
|
141 |
+
# # Get the directory of the current file
|
142 |
+
# current_dir = os.path.dirname(os.path.abspath(__file__))
|
143 |
+
# # Construct the path to the JSON file (assumes file is stored in "files/aragen_v1_results.json")
|
144 |
+
# results_file = os.path.join(current_dir, "files", "aragen_v1_results.json")
|
145 |
+
# with open(results_file, "r") as f:
|
146 |
+
# data = json.load(f)
|
147 |
+
# # Filter out any non-model entries (e.g., timestamp entries)
|
148 |
+
# model_data = [entry for entry in data if "Meta" in entry]
|
149 |
+
# return model_data
|
150 |
+
|
151 |
+
# # Load the JSON data once when the app starts
|
152 |
+
# DATA = load_results()
|
153 |
+
|
154 |
+
# # Extract model names for the dropdown from the JSON "Meta" field
|
155 |
+
# def get_model_names(data):
|
156 |
+
# model_names = [entry["Meta"]["Model Name"] for entry in data]
|
157 |
+
# return model_names
|
158 |
+
|
159 |
+
# MODEL_NAMES = get_model_names(DATA)
|
160 |
+
|
161 |
+
# # -------------------------------
|
162 |
+
# # 2. Define Metrics and Heatmap Generation Functions
|
163 |
+
# # -------------------------------
|
164 |
+
# # Define the six metrics in the desired order.
|
165 |
+
# METRICS = ["Correctness", "Completeness", "Conciseness", "Helpfulness", "Honesty", "Harmlessness"]
|
166 |
+
|
167 |
+
# def generate_heatmap_image(model_entry):
|
168 |
+
# """
|
169 |
+
# For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
170 |
+
# using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
171 |
+
# """
|
172 |
+
# scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
173 |
+
# # Create a vector with the metrics in the defined order.
|
174 |
+
# v = np.array([scores[m] for m in METRICS])
|
175 |
+
# # Compute the 6x6 similarity matrix.
|
176 |
+
# matrix = 1 - np.abs(np.subtract.outer(v, v))
|
177 |
+
# # Create a mask for the upper triangle (keeping the diagonal visible).
|
178 |
+
# mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
179 |
+
|
180 |
+
# plt.figure(figsize=(6, 5))
|
181 |
+
# sns.heatmap(matrix,
|
182 |
+
# mask=mask,
|
183 |
+
# annot=True,
|
184 |
+
# fmt=".2f",
|
185 |
+
# cmap="viridis",
|
186 |
+
# xticklabels=METRICS,
|
187 |
+
# yticklabels=METRICS,
|
188 |
+
# cbar_kws={"label": "Similarity"})
|
189 |
+
# plt.title(f"Confusion Matrix for Model: {model_entry['Meta']['Model Name']}")
|
190 |
+
# plt.xlabel("Metrics")
|
191 |
+
# plt.ylabel("Metrics")
|
192 |
+
# plt.tight_layout()
|
193 |
+
|
194 |
+
# # Save the plot to a bytes buffer.
|
195 |
+
# buf = BytesIO()
|
196 |
+
# plt.savefig(buf, format="png")
|
197 |
+
# plt.close()
|
198 |
+
# buf.seek(0)
|
199 |
+
# # Convert the buffer into a PIL Image.
|
200 |
+
# image = Image.open(buf).convert("RGB")
|
201 |
+
# return image
|
202 |
+
|
203 |
+
# def generate_heatmaps(selected_model_names):
|
204 |
+
# """
|
205 |
+
# Filter the global DATA for entries matching the selected model names,
|
206 |
+
# generate a heatmap for each, and return a list of PIL images.
|
207 |
+
# """
|
208 |
+
# filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
209 |
+
# images = []
|
210 |
+
# for entry in filtered_entries:
|
211 |
+
# img = generate_heatmap_image(entry)
|
212 |
+
# images.append(img)
|
213 |
+
# return images
|
214 |
+
|
215 |
+
# # -------------------------------
|
216 |
+
# # 3. Build the Gradio Interface
|
217 |
+
# # -------------------------------
|
218 |
+
# with gr.Blocks() as demo:
|
219 |
+
# gr.Markdown("## 3C3H Heatmap Generator")
|
220 |
+
# gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
221 |
+
|
222 |
+
# with gr.Row():
|
223 |
+
# model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=MODEL_NAMES[:3])
|
224 |
+
|
225 |
+
# generate_btn = gr.Button("Generate Heatmaps")
|
226 |
+
# # Use the 'columns' parameter to set a grid layout in the gallery.
|
227 |
+
# gallery = gr.Gallery(label="Heatmaps", columns=2)
|
228 |
+
|
229 |
+
# generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
230 |
+
|
231 |
+
# # Launch the Gradio app
|
232 |
+
# demo.launch()
|